数据分析案例-2023年TOP100国外电影数据可视化

 

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

1.项目背景

2.数据集介绍

3.技术工具

4.导入数据

5.数据可视化

文末推荐与福利


1.项目背景

        随着全球化的深入发展,电影作为一种文化表达和艺术形式,逐渐超越了国界,成为世界各地观众共同欣赏的对象。2023年TOP100国外电影榜单的发布,正是这一发展趋势的体现。为了更好地理解这一现象,我们决定对这100部电影进行数据可视化分析,以期揭示其背后的文化、市场和艺术特征。

        近年来,电影产业的数字化和网络化带来了海量的数据资源,这为我们的研究提供了可能。通过数据挖掘和分析,我们可以了解哪些类型的电影更受欢迎,哪些地区或国家的电影在全球范围内有更大的影响力,以及观众的喜好和行为模式等。

        电影不仅仅是一种娱乐方式,它还是一个反映社会现象、传达价值观和塑造文化认同的重要工具。通过研究TOP100国外电影,我们可以深入了解不同文化背景下的故事、主题和表达方式,从而增进国际间的文化交流和理解。

        此外,电影市场的竞争也日益激烈。通过数据可视化,我们可以分析电影的票房、口碑和影响力之间的关系,为电影产业的决策者提供有价值的参考信息,以促进电影产业的健康和可持续发展。

        总之,2023年TOP100国外电影数据可视化研究旨在利用现代数据分析技术,深入挖掘电影数据的价值,理解电影作为一种全球性文化的现象,增进国际文化交流,并为电影产业的未来发展提供决策支持。

2.数据集介绍

        数据集来源与Kaggle,原始数据集为2023年国外最佳的前100部电影数据,共有如下变量:

列名描述
name电影的标题。
rating给电影的评级。
votes电影获得的票数。
runtime电影的持续时间或运行时间。
genre电影所属的流派。
description电影的简要概述或描述。

3.技术工具

Python版本:3.9

代码编辑器:jupyter notebook

4.导入数据

导入第三方库和数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import warnings
warnings.filterwarnings('ignore')
sns.set_style('darkgrid')
plt.style.use('ggplot')

df = pd.read_csv('moviesdataset_2023.csv')
df.head()

查看数据大小

查看数据基本信息

# 数据类型转换
df['rating'] = pd.to_numeric(df['rating'], errors='coerce')
df['votes'] = pd.to_numeric(df['votes'].str.replace(',', ''), errors='coerce')
df['runtime'] = pd.to_numeric(df['runtime'].str.replace(' min', ''), errors='coerce')

查看描述性统计

5.数据可视化

import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10, 6))
sns.histplot(df['rating'].dropna(), bins=10, kde=True, color='skyblue')
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(10, 6))
sns.scatterplot(x='rating', y='votes', data=df, color='coral')
plt.title('Relationship between Rating and Votes')
plt.xlabel('Rating')
plt.ylabel('Votes')
plt.show()

genres_count = df['genre'].explode().value_counts()
plt.figure(figsize=(12, 8))
genres_count.plot(kind='bar', color='salmon')
plt.title('Movie Genres Count')
plt.xlabel('Genres')
plt.ylabel('Count')
plt.xticks(rotation=45, ha='right')
plt.show()

plt.figure(figsize=(10, 6))
sns.histplot(df['runtime'].dropna(), bins=15, kde=True, color='lightgreen')
plt.title('Distribution of Runtime')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(12, 8))
sns.pairplot(df[['rating', 'votes', 'runtime']])
plt.suptitle('Pair Plot for Numerical Columns', y=1.02)
plt.show()

plt.figure(figsize=(14, 8))
sns.countplot(y='genre', data=df, order=df['genre'].explode().value_counts().index, palette='viridis')
plt.title('Count of Movies in Each Genre')
plt.xlabel('Count')
plt.ylabel('Genres')
plt.show()

# 相关系数热力图
plt.figure(figsize=(10, 8))
correlation_matrix = df[['rating', 'votes', 'runtime']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
plt.title('Correlation Heatmap')
plt.show()

plt.figure(figsize=(14, 8))
sns.boxplot(x='runtime', y='genre', data=df, palette='Set2')
plt.title('Box Plot of Runtime Across Genres')
plt.xlabel('Runtime (minutes)')
plt.ylabel('Genres')
plt.show()

# 电影描述词云图
from wordcloud import WordCloud
# 将所有描述组合成一个字符串
all_descriptions = ' '.join(df['description'])
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(all_descriptions)
plt.figure(figsize=(12, 6))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud for Movie Descriptions')
plt.show()

average_rating_by_genre = df.groupby('genre')['rating'].mean().sort_values(ascending=False)
plt.figure(figsize=(14, 8))
sns.barplot(x=average_rating_by_genre.values, y=average_rating_by_genre.index, palette='coolwarm')
plt.title('Average Rating Across Genres')
plt.xlabel('Average Rating')
plt.ylabel('Genres')
plt.show()

文末推荐与福利

《Excel函数与公式应用大全》免费包邮送出3本!

内容简介:      

        本书以 Excel 2021 为蓝本,全面系统地介绍了 Excel 365 & Excel 2021 函数与公式的技术原理、应用技巧与实战案例。内容包括函数与公式基础,文本处理、查找引用、统计求和、Web 类函数、宏表函数、自定义函数、数据库函数等常用函数的应用,以及数组公式、动态数组、多维引用等。

        本书采用循序渐进的方式,由易到难地介绍各个知识点,适合各个水平的 Excel 用户,既可作为初学者的入门指南,又可作为中、高级用户的参考手册。

编辑推荐:     

经典:Excel Home团队策划,多位微软全球MVP通力打造。

升级:上一版长期雄踞Excel函数类图书销量前列,《Excel 2019函数与公式应用大全》重磅升级版。

全面:详尽而又系统地介绍了Excel函数与公式的核心技术。

实战 精选Excel Home的海量案例,零距离接触Excel专家级使用方法。

深入:对一些常常困扰学习者的功能深入揭示背后的原理,让读者知其然,还能知其所以然。

揭秘:独家讲授Excel多项绝密应用,披露Excel专家多年研究成果!

资源:提供视频教学资源及书中相关案例文件,供读者参考练习、快速上手。

  • 抽奖方式:评论区随机抽取3位小伙伴免费送出!
  • 参与方式:关注博主、点赞、收藏、评论区评论“人生苦短,拒绝内卷!”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!
  • 活动截止时间:2024-2-23 20:00:00
  • 当当:http://product.dangdang.com/29678919.html

    京东:https://item.jd.com/14360776.html

 名单公布时间:2024-2-23 21:00:00 

 

资料获取,更多粉丝福利,关注下方公众号获取

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/397680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue3 之 商城项目—会员中心

整体功能梳理 1️⃣个人中心—个人信息和猜你喜欢数据渲染 2️⃣我的订单—各种状态下的订单列表展示 路由配置&#xff08;三级路由配置&#xff09; 准备模版member/index.vue <script setup> </script><template><div class"container">…

redis分布式锁redisson

文章目录 1. 分布式锁1.1 基本原理和实现方式对比synchronized锁在集群模式下的问题多jvm使用同一个锁监视器分布式锁概念分布式锁须满足的条件分布式锁的实现 1.2 基于Redis的分布式锁获取锁&释放锁操作示例 基于Redis实现分布式锁初级版本ILock接口SimpleRedisLock使用示…

条码扫描器

介绍 条码扫描器&#xff0c;又称为条码阅读器、条码扫描枪、条形码扫描器、条形码扫描枪及条形码阅读器。它是用于读取条码所包含信息的阅读设备&#xff0c;利用光学原理&#xff0c;把条形码的内容解码后通过数据线或者无线的方式传输到电脑或者别的设备。广泛应用于超市、物…

idea代码review工具Code Review Helper使用介绍

之前在团队里面遇到一个关于代码review的问题&#xff0c;使用gitlab自己的还是facebook的Phabricator&#xff0c;很难看到整体逻辑&#xff0c;因为业务逻辑代码可能不在这次改动范围内&#xff0c;在去源库中找不好找。针对这个刚需&#xff0c;在网上找了一个idea的代码工具…

区块链革命:Web3如何改变我们的生活

随着技术的不断发展&#xff0c;区块链技术作为一种去中心化的分布式账本技术&#xff0c;正逐渐成为数字世界的核心。Web3作为区块链技术的重要组成部分&#xff0c;正在引领着数字化时代的变革&#xff0c;其影响已经开始渗透到我们生活的方方面面。本文将深入探讨区块链革命…

ALBEF算法解读

ALBEF论文全名Align before Fuse: Vision and Language Representation Learning with Momentum Distillation&#xff0c;来自于Align before Fuse&#xff0c;作者团队为Salesforce Research。 论文地址&#xff1a;https://arxiv.org/pdf/2107.07651.pdf 论文代码&#xff1…

SICTF round#3 web

1.100&#xff05;_upload url可以进行文件包含&#xff0c;但是flag被过滤 看一下源码 <?phpif(isset($_FILES[upfile])){$uploaddir uploads/;$uploadfile $uploaddir . basename($_FILES[upfile][name]);$ext pathinfo($_FILES[upfile][name],PATHINFO_EXTENSION);$t…

大模型量化技术原理-LLM.int8()、GPTQ

近年来&#xff0c;随着Transformer、MOE架构的提出&#xff0c;使得深度学习模型轻松突破上万亿规模参数&#xff0c;从而导致模型变得越来越大&#xff0c;因此&#xff0c;我们需要一些大模型压缩技术来降低模型部署的成本&#xff0c;并提升模型的推理性能。 模型压缩主要分…

react开发者必备vscode插件【2024最新】

React开发者必备VSCode插件及使用教程 Visual Studio Code&#xff08;VSCode&#xff09;是当今最流行的代码编辑器之一&#xff0c;特别是在前端开发者中。对于使用React的开发者来说&#xff0c;VSCode不仅因其轻量和高度可定制而受到欢迎&#xff0c;还因为其强大的插件生…

Java项目,营销抽奖系统设计实现

作者&#xff1a;小傅哥 博客&#xff1a;https://bugstack.cn 项目&#xff1a;https://gaga.plus 沉淀、分享、成长&#xff0c;让自己和他人都能有所收获&#xff01;&#x1f604; 大家好&#xff0c;我是技术UP主&#xff0c;小傅哥。 经过这个假期的嘎嘎卷&#x1f9e8;…

8 大内部排序算法图文讲解

排序算法可以分为内部排序和外部排序&#xff0c;内部排序是数据记录在内存中进行排序&#xff0c;而外部排序是因排序的数据很大&#xff0c;一次不能容纳全部的排序记录&#xff0c;在排序过程中需要访问外存。常见的内部排序算法有&#xff1a;插入排序、希尔排序、选择排序…

软件测试面试题常见一百道【含答案】

1、问&#xff1a;你在测试中发现了一个bug&#xff0c;但是开发经理认为这不是一个bug&#xff0c;你应该怎样解决? 首先&#xff0c;将问题提交到缺陷管理库里面进行备案。 然后&#xff0c;要获取判断的依据和标准&#xff1a; 根据需求说明书、产品说明、设计文档等&am…

75.SpringMVC的拦截器和过滤器有什么区别?执行顺序?

75.SpringMVC的拦截器和过滤器有什么区别&#xff1f;执行顺序&#xff1f; 区别 拦截器不依赖与servlet容器&#xff0c;过滤器依赖与servlet容器。拦截器只能对action请求(DispatcherServlet 映射的请求)起作用&#xff0c;而过滤器则可以对几乎所有的请求起作用。拦截器可…

Redis基础和高级使用

文章目录 Redis概述Redis简介Redis特点Redis适合于做Redis不适合于做Redis安装 Redis命令Redis命令Redis的键 Redis数据类型Redis支持的数据类型字符串及相关命令字符串应用场景&#xff1a;列表及相关命令列表应用场景&#xff1a;集合及相关命令集合应用场景&#xff1a;有序…

环信IM Android端实现华为推送详细步骤

首先我们要参照华为的官网去完成 &#xff0c;以下两个配置都是华为文档为我们提供的 1.https://developer.huawei.com/consumer/cn/doc/HMSCore-Guides/android-config-agc-0000001050170137#section19884105518498 2.https://developer.huawei.com/consumer/cn/doc/HMSCore…

[OpenAI]继ChatGPT后发布的Sora模型解析与体验通道

前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家&#xff1a;https://www.captainbed.cn/z ChatGPT体验地址 文章目录 前言OpenAI体验通道Spacetime Latent Patches 潜变量时空碎片, 建构视觉语言系统…

HTTPS(超文本传输安全协议)被恶意请求该如何处理。

HTTPS&#xff08;超文本传输安全协议&#xff09;端口攻击通常是指SSL握手中的一些攻击方式&#xff0c;比如SSL握手协商过程中的暴力破解、中间人攻击和SSL剥离攻击等。 攻击原理 攻击者控制受害者发送大量请求&#xff0c;利用压缩算法的机制猜测请求中的关键信息&#xf…

【压缩感知基础】Nyquist采样定理

Nyquist定理&#xff0c;也被称作Nyquist采样定理&#xff0c;是由哈里奈奎斯特在1928年提出的&#xff0c;它是信号处理领域的一个重要基础定理。它描述了连续信号被离散化为数字信号时&#xff0c;采样的要求以避免失真。 数学表示 Nyquist定理的核心内容可以描述如下&…

java+vue_springboot企业设备安全信息系统14jbc

企业防爆安全信息系统采用B/S架构&#xff0c;数据库是MySQL。网站的搭建与开发采用了先进的java进行编写&#xff0c;使用了vue框架。该系统从三个对象&#xff1a;由管理员、人员和企业来对系统进行设计构建。主要功能包括&#xff1a;个人信息修改&#xff0c;对人员管理&am…

目录IO 2月19日学习笔记

1. lseek off_t lseek(int fd, off_t offset, int whence); 功能: 重新设定文件描述符的偏移量 参数: fd:文件描述符 offset:偏移量 whence: SEEK_SET 文件开头 SEE…