Bert基础(一)--transformer概览

1、简介

当下最先进的深度学习架构之一,Transformer被广泛应用于自然语言处理领域。它不单替代了以前流行的循环神经网络(recurrent neural network, RNN)和长短期记忆(long short-term memory, LSTM)网络,并且以它为基础衍生出了诸如BERT、GPT-3、T5等知名架构。

本文将带领你深入了解Transformer的实现细节及工作原理。本章首先介绍Transformer的基本概念,然后通过一个文本翻译实例进一步讲解Transformer如何将编码器−解码器架构用于语言翻译任务。我们将通过探讨编码器(encoder)的组成部分了解它的工作原理。之后,我们将深入了解解码器(decoder)的组成部分。最后,我们将整合编码器和解码器,进而理解Transformer的整体工作原理。

2、Transformer简介

循环神经网络和长短期记忆网络已经广泛应用于时序任务,比如文本预测、机器翻译、文章生成等。然而,它们面临的一大问题就是如何记录长期依赖。

为了解决这个问题,一个名为Transformer的新架构应运而生。从那以后,Transformer被应用到多个自然语言处理方向,到目前为止还未有新的架构能够将其替代。可以说,它的出现是自然语言处理领域的突破,并为新的革命性架构(BERT、GPT-3、T5等)打下了理论基础。

Transformer完全依赖于注意力机制,并摒弃了循环。它使用的是一种特殊的注意力机制,称为自注意力(self-attention)。我们将在后面介绍具体细节。

让我们通过一个文本翻译实例来了解Transformer是如何工作的。Transformer由编码器和解码器两部分组成。首先,向编码器输入一句话(原句),让其学习这句话的特征[插图],再将特征作为输入传输给解码器。最后,此特征会通过解码器生成输出句(目标句)。

假设我们需要将一个句子从英文翻译为法文。如图所示,首先,我们需要将这个英文句子(原句)输进编码器。编码器将提取英文句子的特征并提供给解码器。最后,解码器通过特征完成法文句子(目标句)的翻译。
在这里插入图片描述
此方法看起来很简单,但是如何实现呢?Transformer中的编码器和解码器是如何将英文(原句)转换为法文(目标句)的呢?编码器和解码器的内部又是怎样工作的呢?接下来,我们将按照数据处理的顺序,依次讲解编码器和解码器.

2.1 理解编码器

Transformer中的编码器不止一个,而是由一组N 个编码器串联而成。一个编码器的输出作为下一个编码器的输入。在图中有N 个编码器,每一个编码器都从下方接收数据,再输出给上方。以此类推,原句中的特征会由最后一个编码器输出。编码器模块的主要功能就是提取原句中的特征。
在这里插入图片描述
需要注意的是,在Transformer原论文“Attention Is All You Need”中,作者使用了N = 6,也就是说,一共有6个编码器叠加在一起。当然,我们可以尝试使用不同的N 值。这里为了方便理解,我们使用N=2,如图所示。
在这里插入图片描述
编码器到底是如何工作的呢?它又是如何提取出原句(输入句)的特征的呢?要进一步理解,我们可以将编码器再次分解。下图展示了编码器的组成部分。
在这里插入图片描述
从上图中可知,每一个编码器的构造都是相同的,并且包含两个部分:

  • 多头注意力层
  • 前馈网络层

现在我们来学习这两部分是如何工作的。要了解多头注意力机制的工作原理,我们首先需要理解什么是自注意力机制。

2.2 自注意力机制

让我们通过一个例子来快速理解自注意力机制。请看下面的例句:
A dog ate the food because it was hungry(一只狗吃了食物,因为它很饿)

例句中的代词it(它)可以指代dog(狗)或者food(食物)。当读这段文字的时候,我们自然而然地认为it指代的是dog,而不是food。但是当计算机模型在面对这两种选择时该如何决定呢?这时,自注意力机制有助于解决这个问题。

还是以上句为例,我们的模型首先需要计算出单词A的特征值,其次计算dog的特征值,然后计算ate的特征值,以此类推。当计算每个词的特征值时,模型都需要遍历每个词与句子中其他词的关系。模型可以通过词与词之间的关系来更好地理解当前词的意思。

比如,当计算it的特征值时,模型会将it与句子中的其他词一一关联,以便更好地理解它的意思。如下图所示,it的特征值由它本身与句子中其他词的关系计算所得。通过关系连线,模型可以明确知道原句中it所指代的是dog而不是food,这是因为it与dog的关系更紧密,关系连线相较于其他词也更粗。
在这里插入图片描述
我们已经初步了解了什么是自注意力机制,下面我们将关注它具体是如何实现的。

为简单起见,我们假设输入句(原句)为I am good(我很好)。首先,我们将每个词转化为其对应的词嵌入向量。需要注意的是,嵌入只是词的特征向量,这个特征向量也是需要通过训练获得的。
单词I的词嵌入向量可以用x1来表示,相应地,am为x2,good为x3,即:

  • 单词I的词嵌入向量 x 1 = [ 1.76 , 2.22 , … … , 6.66 ] x_1 = [1.76, 2.22 ,……, 6.66] x1=[1.76,2.22,……,6.66]
  • 单词am的词嵌入向量 x 2 = [ 7.77 , 0.631 , … … , 5.35 ] x_2 = [7.77, 0.631 ,……, 5.35] x2=[7.77,0.631,……,5.35]
  • 单词good的词嵌入向量 x 3 = [ 11.44 , 10.10 , … … , 3.33 ] x_3 = [11.44, 10.10 ,……, 3.33] x3=[11.44,10.10,……,3.33]

这样一来,原句I am good就可以用一个矩阵[插图](输入矩阵或嵌入矩阵)来表示,如下图所示。
在这里插入图片描述

图1-6中的值为随意设定,只是为了让我们更好地理解其背后的数学原理。

通过输入矩阵X,我们可以看出,矩阵的第一行表示单词I的词嵌入向量。以此类推,第二行对应单词am的词嵌入向量,第三行对应单词good的词嵌入向量。所以矩阵X的维度为[句子的长度×词嵌入向量维度]。原句的长度为3,假设词嵌入向量维度为512,那么输入矩阵的维度就是[3×512]。

现在通过矩阵X,我们再创建三个新的矩阵:查询(query)矩阵Q、键(key)矩阵K,以及值(value)矩阵V。等一下,怎么又多了三个矩阵?为何需要创建它们?接下来,我们将继续了解在自注意力机制中如何使用这三个矩阵。

为了创建查询矩阵、键矩阵和值矩阵,我们需要先创建另外三个权重矩阵,分别为 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV。用矩阵X分别乘以矩阵 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV,就可以依次创建出查询矩阵Q、键矩阵K和值矩阵V。

值得注意的是,权重矩阵 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV的初始值完全是随机的,但最优值则需要通过训练获得。我们取得的权值越优,通过计算所得的查询矩阵、键矩阵和值矩阵也会越精确。

如图所示,将输入矩阵X分别乘以 W Q 、 W K 、 W V W^Q 、W^K、W^V WQWKWV后,我们就可以得出对应的查询矩阵、键矩阵和值矩阵。

在这里插入图片描述
根据上图,我们可以总结出以下三点。

  • 三个矩阵的第一行 q 1 , k 1 , v 1 q_1,k_1,v_1 q1,k1,v1分别代表单词I的查询向量、键向量和值向量。
  • 三个矩阵的第二行 q 2 , k 2 , v 2 q_2,k_2,v_2 q2,k2,v2分别代表单词am的查询向量、键向量和值向量。
  • 三个矩阵的第三行 q 3 , k 3 , v 3 q_3,k_3,v_3 q3,k3,v3分别代表单词good的查询向量、键向量和值向量。

因为每个向量的维度均为64,所以对应的矩阵维度为[句子长度×64]。因为我们的句子长度为3,所以代入后可得维度为[3×64]。至此,我们还是不明白为什么要计算这些值。该如何使用查询矩阵、键矩阵和值矩阵呢?它们怎样才能用于自注意力模型呢?这些问题将在下面进行解答。

2.3 理解自注意力机制

目前,我们学习了如何计算查询矩阵Q、键矩阵K和值矩阵V,并知道它们是基于输入矩阵X计算而来的。现在,让我们学习查询矩阵、键矩阵和值矩阵如何应用于自注意力机制。

要计算一个词的特征值,自注意力机制会使该词与给定句子中的所有词联系起来。还是以I am good这句话为例。为了计算单词I的特征值,我们将单词I与句子中的所有单词一一关联,如图所示。
在这里插入图片描述
了解一个词与句子中所有词的相关程度有助于更精确地计算特征值。现在,让我们学习自注意力机制如何利用查询矩阵、键矩阵和值矩阵将一个词与句子中的所有词联系起来。自注意力机制包括4个步骤,我们来逐一学习。

第1步

自注意力机制首先要计算查询矩阵Q与键矩阵V的点积,两个矩阵如图所示。
在这里插入图片描述
下图显示了查询矩阵Q与键矩阵 K T K^T KT的点积结果
在这里插入图片描述
但为何需要计算查询矩阵与键矩阵的点积呢? Q ⋅ K T Q · K^T QKT到底是什么意思?下面,我们将通过细看 Q ⋅ K T Q · K^T QKT的结果来理解以上问题。

首先,来看[插图]矩阵的第一行,如下图所示。可以看到,这一行计算的是查询向量 q 1 q_1 q1(I)与所有的键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。通过计算两个向量的点积可以知道它们之间的相似度。

因此,通过计算查询向量( q 1 q_1 q1)和键向量( k 1 , k 2 , k 3 k_1, k_2, k_3 k1,k2,k3)的点积,可以了解单词I与句子中的所有单词的相似度。我们了解到,I这个词与自己的关系比与am和good这两个词的关系更紧密,因为点积值 q 1 ⋅ k 1 q_1·k_1 q1k1大于 q 1 ⋅ k 2 q_1·k_2 q1k2 q 1 ⋅ k 3 q_1·k_3 q1k3
在这里插入图片描述

注意,这里使用的数值是任意选择的,只是为了让我们更好地理解背后的数学原理。

现在来看 Q ⋅ K T Q · K^T QKT矩阵的第二行,如下图所示。现在需要计算查询向量 q 2 q_2 q2(am)与所有的键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。这样一来,我们就可以知道am与句中所有词的相似度。通过查看 Q ⋅ K T Q · K^T QKT矩阵的第二行可以知道,单词am与自己的关系最为密切,因为点积值最大。

在这里插入图片描述
同理,来看 Q ⋅ K T Q · K^T QKT矩阵的第三行。如下图所示,计算查询向量 q 3 q_3 q3(good)与所有键向量 k 1 k_1 k1(I)、 k 2 k_2 k2(am)和 k 3 ( g o o d ) k_3(good) k3(good)的点积。
从结果可知,good与自己的关系更密切,因为点积值 q 3 ⋅ k 3 q_3·k_3 q3k3大于 q 3 ⋅ k 1 q_3·k_1 q3k1 q 3 ⋅ k 2 q_3·k_2 q3k2

在这里插入图片描述
综上所述,计算查询矩阵Q与键矩阵 K V K^V KV的点积,从而得到相似度分数。这有助于我们了解句子中每个词与所有其他词的相似度。

第2步

自注意力机制的第2步是将 Q ⋅ K T Q · K^T QKT矩阵除以键向量维度的平方根。这样做的目的主要是获得稳定的梯度。

我们用 d k d_k dk来表示键向量维度。然后,将 Q ⋅ K T Q · K^T QKT除以 d k \sqrt{d_k} dk 。在本例中,键向量维度是64。取64的平方根,我们得到8。将第1步中算出的 Q ⋅ K T Q · K^T QKT除以8,如下图所示。

在这里插入图片描述

第3步

目前所得的相似度分数尚未被归一化,我们需要使用softmax函数对其进行归一化处理。如下图所示,应用softmax函数将使数值分布在0到1的范围内,且每一行的所有数之和等于1。

在这里插入图片描述
我们将上图中的矩阵称为分数矩阵。通过这些分数,我们可以了解句子中的每个词与所有词的相关程度。以图中的分数矩阵的第一行为例,它告诉我们,I这个词与它本身的相关程度是90%,与am这个词的相关程度是7%,与good这个词的相关程度是3%。

第4步

至此,我们计算了查询矩阵与键矩阵的点积,得到了分数,然后用softmax函数将分数归一化。自注意力机制的最后一步是计算注意力矩阵Z。注意力矩阵包含句子中每个单词的注意力值。它可以通过将分数矩阵softmax ( Q ⋅ K T / d k Q · K^T/\sqrt{d_k} QKT/dk )乘以值矩阵V得出,如图所示。
在这里插入图片描述
假设计算结果如下图所示。
在这里插入图片描述注意力矩阵Z就是值向量与分数加权之后求和所得到的结果。让我们逐行理解这个计算过程。首先,第一行 z 1 z_1 z1对应I这个词的自注意力值,它通过下图所示的方法计算所得。
在这里插入图片描述
从上图中可以看出,单词I的自注意力值 z 1 z_1 z1是分数加权的值向量之和。所以, z 1 z_1 z1的值将包含90%的值向量 v 1 v_1 v1(I)、7%的值向量 v 2 v_2 v2(am),以及3%的值向量 v 3 v_3 v3(good)。

这有什么用呢?为了回答这个问题,让我们回过头去看之前的例句:A dog ate the food because it was hungry(一只狗吃了食物,因为它很饿)。在这里,it这个词表示dog。我们将按照前面的步骤来计算it这个词的自注意力值。假设计算过程如图所示。
在这里插入图片描述
从图中可以看出,it这个词的自注意力值包含100%的值向量 v 2 v_2 v2(dog)。这有助于模型理解it这个词实际上指的是dog而不是food。这也再次说明,通过自注意力机制,我们可以了解一个词与句子中所有词的相关程度。回到I am good这个例子,单词am的自注意力值 v 2 v_2 v2也是分数加权的值向量之和,如图所示。
在这里插入图片描述
从上图中可以看出, z 2 z_2 z2的值包含2.5%的值向量 v 1 v_1 v1(I)、95%的值向量 v 2 v_2 v2(am),以及2.5%的值向量 v 3 v_3 v3(good)。

同样,单词good的自注意力值 z 3 z_3 z3也是分数加权的值向量之和,如图所示。
在这里插入图片描述
可见, z 3 z_3 z3的值包含21%的值向量 v 1 v_1 v1(I)、3%的值向量 v 2 v_2 v2(am),以及76%的值向量 v 3 v_3 v3(good)。

综上所述,注意力矩阵Z由句子中所有单词的自注意力值组成,它的计算公式如下。

Z = s o f t m a x ( Q ⋅ K T d k ) V Z = softmax(\frac{Q·K^T}{\sqrt{d_k}})V Z=softmax(dk QKT)V

现将自注意力机制的计算步骤总结如下:
(1) 计算查询矩阵与键矩阵的点积 Q ⋅ K T Q·K^T QKT,求得相似值,称为分数;
(2) 将[插图]除以键向量维度的平方根 d k \sqrt{d_k} dk
(3) 用softmax函数对分数进行归一化处理,得到分数矩阵 s o f t m a x ( Q ⋅ K T d k ) softmax(\frac{Q·K^T}{\sqrt{d_k}}) softmax(dk QKT)
(4) 通过将分数矩阵与值矩阵 V V V相乘,计算出注意力矩阵 Z Z Z
自注意力机制的计算流程图如图所示。

在这里插入图片描述
自注意力机制也被称为缩放点积注意力机制,这是因为其计算过程是先求查询矩阵与键矩阵的点积,再用 d k \sqrt{d_k} dk 对结果进行缩放。

我们已经了解了自注意力机制的工作原理。在下节中,我们将了解多头注意力层。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/396365.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

化学空间可视化(chemical space visualization)开源软件ChemPlot的安装及使用

文章目录 前言一、ChemPlot是什么?二、conda环境安装ChemPlot1. 创建conda环境2. 安装chemplot及需要的包3. 检验安装 三、使用步骤1. 化合物数据库可视化使用方法BBBP数据库的t-SNE降维后可视化:BBBP数据库的PCA降维后可视化:BBBP数据库的UM…

小米空气净化器2s使用体验

这个产品最早上市是2017年,我买回来实际上只用了1年就弃用了,性能不行,使用体验也不好。 打算买新的空气净化器,抽空吐槽一下。 这个净化器发售价是899,在当时来说算中下水平的,小米的,有米家…

第一件事 什么是 Java 虚拟机 (JVM)

1、什么是虚拟机? - 这个其实是一个挺逗的事情,说白了,就是基于某个硬件架构,在这个硬件部署了一个操作系统,再构架一层虚拟的操作系统,这个新构架的操作系统就是虚拟机。 不知道的兄弟姐妹们,…

Unity3d Mesh篇(一)— 创建简单三角面

文章目录 前言一、Mesh组成二、使用步骤三、效果四、总结 前言 Mesh(网格)是一种常用的3D图形表示方法,它由顶点,法线,UV 坐标,和三角形等组成。您可以使用 Mesh 类的方法来创建或修改网格,也可…

stm32 DCMI的知识点

1.DCMI的简介 DCMI全称Digital camera interface(数字摄像头接口),是一种可以采集摄像头数据的一种接口。此接口适用于黑白摄像头、X24 和 X5 摄像头,并可以假定所有预处理(如调整大小)都可以在该摄像头模…

力扣 188. 买卖股票的最佳时机 IV

题目来源:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/ C题解:动态规划 思路同力扣 123. 买卖股票的最佳时机 III-CSDN博客,只是把最高2次换成k次。如果思路不清晰,可以将k从0写到4等找找规律…

vue 导出,下载错误提示、blob与json数据转换

一、成功/失败 - 页面展示 失败 成功 二、成功/失败 - 接口请求/响应展示成功 2. 失败 三、解决 // 导出列表exportReceivedExcel() {if (this.tableCheckedValue) {this.form.ids this.tableCheckedValue.map(v > {return v.id || null})}this.loadingReceivedExcel …

智能未来之路:《NIST AI RMF 1.0》与负责任的AI发展

引言 在当今快速发展的人工智能领域,美国国家标准与技术研究院(NIST)发布的《NIST AI RMF 1.0》框架是一个标志性的里程碑。这一框架不仅为AI技术的负责任和可信赖使用提供了重要指导,而且对于推动可持续的AI发展具有深远影响。本…

Vue-route核心知识整理

目录 1 相关理解 1.1 对 vue-router 的理解 1.2 对 SPA 应用的理解 1.3 对路由的理解 1.3.1 什么是路由? 1.3.2 路由的分类 2 几个注意点 3 路由的基本使用 4 嵌套 (多级) 路由 5 路由传参 5.1 query 方式传参 5.1.1 跳转路由并携带query参数&#xff0…

Swift Combine 使用 print 操作符调试管道 从入门到精通二十四

Combine 系列 Swift Combine 从入门到精通一Swift Combine 发布者订阅者操作者 从入门到精通二Swift Combine 管道 从入门到精通三Swift Combine 发布者publisher的生命周期 从入门到精通四Swift Combine 操作符operations和Subjects发布者的生命周期 从入门到精通五Swift Com…

《Solidity 简易速速上手小册》第2章:搭建 Solidity 开发环境(2024 最新版)

文章目录 2.1 安装和配置 Solidity2.1.1 基础知识解析安装 Solidity 编译器配置开发环境熟悉命令行工具 2.1.2 重点案例:配置本地开发环境案例 Demo:配置本地 Solidity 环境案例代码:HelloWorld.sol 2.1.3 拓展案例 1:设置 Remix …

STM32入门教程:新建工程

本博文是基于建立好STM32的keil5软件后建立工程,如果还没下载软件建议先下载好该软件,在 B站江科大32教学有,并把相关文件下好。 STM32的开发方式有:基于寄存器的方式,基于标准库也就是库函数的方式,基于…

中期国际2.19黄金市场分析:美国通胀数据火热,黄金面临高利率削弱的挑战

周一(2月19日)亚市,现货黄金震荡走高,目前交投于2018.32美元/盎司左右,涨幅约为0.25%。上周五金价收涨0.46%,报价2013.46美元/盎司,虽然黄金周五略有上涨,但由于通胀数据炽热,美联储提前降息的可…

Linux 驱动开发基础知识——LED 模板驱动程序的改造:设备树(十一)

个人名片: 🦁作者简介:学生 🐯个人主页:妄北y 🐧个人QQ:2061314755 🐻个人邮箱:2061314755qq.com 🦉个人WeChat:Vir2021GKBS 🐼本文由…

【unity实战】使用unity制作一个类似Rust的3D生存建造建筑系统(附项目源码)

配置连接点 材质 连接器控制 using System.Collections; using System.Collections.Generic; using UnityEngine;public class Connector : MonoBehaviour {[Header("连接器位置")]public ConnectorPosition connectorPosition;[Header("连接器所属建筑类型&qu…

静电ESD整改实践:从基础到高级的应对策略?|深圳比创达电子EMC

在电子制造和数据中心等高科技领域,静电放电(Electrostatic Discharge,简称ESD)是一个长期以来备受关注的问题。静电不仅可能损坏敏感的电子设备,还可能导致数据损失甚至安全事故。随着科技的不断发展,对ES…

大数据 - Spark系列《七》- 分区器详解

Spark系列文章: 大数据 - Spark系列《一》- 从Hadoop到Spark:大数据计算引擎的演进-CSDN博客 大数据 - Spark系列《二》- 关于Spark在Idea中的一些常用配置-CSDN博客 大数据 - Spark系列《三》- 加载各种数据源创建RDD-CSDN博客 大数据 - Spark系列《…

【天衍系列 05】Flink集成KafkaSink组件:实现流式数据的可靠传输 高效协同

文章目录 01 KafkaSink 版本&导言02 KafkaSink 基本概念03 KafkaSink 工作原理1.初始化连接2.定义序列化模式3.创建KafkaSink算子4.创建数据源5.将数据流添加到KafkaSink6.内部工作机制 04 KafkaSink参数配置05 KafkaSink 应用依赖06 KafkaSink 快速入门6.1 包结构6.2 项目…

1.网络游戏逆向分析与漏洞攻防-游戏启动流程漏洞-测试需求与需求拆解

内容参考于:易道云信息技术研究院VIP课 上一个内容:分析接收到的对话数据包 这是一个新的篇章,之前是关于把我们的东西放进游戏里和内存里的数据分析与利用,现在是专注于网络部分,通过分析网络数据包得到应用程序中各…

Rofin罗芬Laser激光DQ80设备操作说明书

Rofin罗芬Laser激光DQ80设备操作说明书