【目标跟踪】提供一种简单跟踪测距方法(c++)

文章目录

  • 一、前言
  • 二、c++代码
    • 2.1、Tracking
    • 2.2、KalmanTracking
    • 2.3、Hungarian
    • 2.4、TrackingInfo
  • 三、调用示例
  • 四、结果

一、前言

  1. 许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。
  2. 检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。
  3. 往期博客介绍了许多处理复杂问题的,而大部分时候我们算力有限(内存、耗时),所以很多时候只需要提供一种检测适用的方法。
  4. 本篇提供一种检测跟踪测距方法,根据博主提供的 c++ 代码来进行讲解。

二、c++代码

直接上代码,共7个文件,都在同一目录下。

Hungarian.cpp

Hungarian.h

KalmanTracker.cpp

kalmanTracker.h

Tracking.cpp

Tracking.h

TrackingInfo.h

2.1、Tracking

这部分代码就是整个跟踪代码的框架了,我已经对代码尽可能的做了简化。注释也算比较详细。

函数解释
SetInputTrackingMessage输入数据
TargetTracking目标跟踪计算。当航迹为空时,分配管理。预测,匹配,更新,获取结果
SaveObjectMessage1、转化目标检测数据。 2、可以适当过滤检测结果,如:置信度低的目标过滤掉等
ManageTrack航迹管理,分配id、状态、box等
PredictTrack预测。box预测、舍弃脱离范围的目标框
MatchUpdateTrack匹配。匈牙利矩阵计算代码在 Hungarian.cpp。分情况讨论,检测框个数>预测框 预测框个数>检测框
UpdateTrack如果匹配上,利用检测的结果,会对预测的结果进行修正。卡尔曼代码在 KalmanTracking.cpp
PublishTrackMessage控制信息的输出
GetWorldPosition距离计算,简化计算,距离每次都更新。当然也可以添加状态进行预测

Tracking.cpp Tracking.h 这部分代码虽然简短,但是基本运算都具备,麻雀虽小五脏俱全。代码思路也很清晰,可以结合我的注释理解。代码如下:

  • Tracking.cpp
#include "Tracking.h"


// 初始化
bool Tracking::InitData(std::shared_ptr<DisInit> disInit)
{   
    mDisInit = disInit; // disInit:相机参数内外参
    return true;
}

// 反初始化
void Tracking::Uninit()
{
}

void Tracking::SetInputTrackingMessage(std::shared_ptr<DetectInfo> objectMessage)
{
    mObjectMessage = objectMessage; // 私有变量mObjectMessage存放 目标检测消息
}

// 目标跟踪计算
void Tracking::TargetTracking()
{
    frameCount++;   // 每次调用frameCount+1, 判断处理了几帧
    std::vector<TrackingBox> detData = SaveObjectMessage(mObjectMessage); // 存放目标检测信息
    if (trackers.size() == 0) {  
        if (detData.size() != 0) {
            for (unsigned int i = 0; i < detData.size(); i++) {
                ManageTrack(detData, i);                   // 1、管理航迹信息
            }
        }
        return ;    // 当trackers.size()为0时直接跳出函数,
    }
    std::vector<PredictBox> predictBox = PredictTrack();    // PredictTrack 2、预测航迹 
    MatchUpdateTrack(predictBox, detData);                  // MatchUpdateTrack 3、匹配 && 4、更新 UpdateTrack
    // 管理航迹 a、长时间未更新 b、框已经超出图片   
    for (auto it = trackers.begin(); it != trackers.end();) {  
        cv::Rect_<float> box = (*it).kBox.GetState();
        if ((*it).kBox.mTimeSinceUpdate > maxAge || (box.x + box.width < 0 || box.y + box.height < 0 
                || box.x > imageWidth ||  box.y > imageHeight || box.height < 0 || box.width < 0)){ 
            it = trackers.erase(it);
        }
        else {
            it++;
        }
    }
    PublishTrackMessage();                                  // 5、 内部得到跟踪消息、跟踪图片
}

std::shared_ptr<TrackerMessage> Tracking::GetOutputTrackingMessage()
{
    return mTrackerMessage; // 提供外部获取目标跟踪消息接口
}

std::vector<Tracking::TrackingBox> Tracking::SaveObjectMessage(std::shared_ptr<DetectInfo> objectMessage)
{
    std::vector<TrackingBox> detData; // 存放目标检测信息
    for(auto message:objectMessage->boxes) {   
        TrackingBox tb; 
        tb.id = 0; // 默认值
        tb.box = cv::Rect_<float>(cv::Point_<float>(message.x, message.y), cv::Point_<float>(message.x + message.w, message.y + message.h)); // 检测框
        tb.label = message.type;    // 保存检测类别
        tb.score = message.score;   // 保存置信度
        detData.push_back(tb);      // detData存放目标检测信息
    }
    return detData; // 用TrackingBox结构体存放目标检测消息 方便后续计算
}

// 1、管理航迹信息
void Tracking::ManageTrack(std::vector<TrackingBox> detectData, int index) 
{
    // trackers:跟踪航迹, detectData:目标检测消息, index:索引
    StateBox stateBox;
    stateBox.label = detectData[index].label;   // 目标标签
    stateBox.score = detectData[index].score;   // 目标置信度
    stateBox.id = idCount;                      // 目标id
    stateBox.kBox = KalmanTracker(detectData[index].box);   // KalmanTracker所需的box
    idCount++;
    float pixeX = detectData[index].box.x + detectData[index].box.width / 2, pixeY = detectData[index].box.y + detectData[index].box.height;
    stateBox.state = GetPosition(pixeX, pixeY); // x,y相对于车体
    trackers.push_back(stateBox);
}

// 2、预测航迹
std::vector<Tracking::PredictBox> Tracking::PredictTrack()
{
    std::vector<PredictBox> predictBox; 
    for (auto it = trackers.begin(); it != trackers.end();) {
        PredictBox pBox;
        pBox.label = (*it).label;           // 类别
        pBox.box = (*it).kBox.predict();    // box预测;
        pBox.state = (*it).state;           
        if (pBox.box.x + pBox.box.width >= 0 && pBox.box.y + pBox.box.height >= 0 && pBox.box.x <= imageWidth && pBox.box.y <= imageHeight) {
            predictBox.push_back(pBox); // predictBox存放符合条件的box
            it++;
        }
        else {
            it = trackers.erase(it);    // 舍弃不符合条件航迹
        }
    }
    return predictBox;  // 返回所有预测后的box、state
}

// 3、匹配
void Tracking::MatchUpdateTrack(std::vector<PredictBox> predictBox, std::vector<TrackingBox> detectData)
{
    // trackers:当前所有航迹, predictBox:当前所有预测box、state, detectData:当前帧检测信息
    unsigned int trkNum = predictBox.size();    // 上一帧预测框得个数
	unsigned int detNum = detectData.size();    // 当前检测框得个数
    std::vector<std::vector<double>> iouMatrix; // 关联矩阵->匈牙利匹配
    iouMatrix.resize(trkNum, std::vector<double>(detNum, 1));   // resize关联矩阵大小
    if (trkNum != 0 && detNum != 0) {
        for (unsigned int i = 0; i < trkNum; i++) {
            cv::Rect_<float> box = predictBox[i].box; 
            for (unsigned int j = 0; j < detNum; j++) {
                float iouBox = GetIOU(box, detectData[j].box);
                iouMatrix[i][j] = 1 - iouBox; // 使用1 - weight * iou匈牙利算法匹配最小的权重.
            }
        }
        HungarianAlgorithm hungAlgo;
        std::vector<int> assignment; 
        hungAlgo.Solve(iouMatrix, assignment);      // 匈牙利匹配计算
        std::set<int> unMatchedDetections;          // 存放未匹配的检测框
        std::set<int> allItems;
        std::set<int> matchedItems;

        // 检测框个数>预测框个数  detNum:当前帧框个数,trknum:预测框个数 
        if (detNum > trkNum) {  
            for (unsigned int n = 0; n < detNum; n++) {
                allItems.insert(n);
            }
            for (unsigned int i = 0; i < trkNum; ++i) {
                matchedItems.insert(assignment[i]);
            }
            std::set_difference(allItems.begin(), allItems.end(), matchedItems.begin(), matchedItems.end(), 
                                std::insert_iterator<std::set<int>>(unMatchedDetections, unMatchedDetections.begin()));
        }
        std::set<int> unMatchedTrajectories; // 存放未匹配的跟踪框
        // 检测框个数 < 预测框个数
        if (detNum < trkNum) { 
            for (unsigned int i = 0; i < trkNum; ++i) {
                // 匈牙利算法没有匹配到 当前索引对应的值为-1
                if (assignment[i] == -1) { 
                    unMatchedTrajectories.insert(i);
                }
            }
        }
        std::vector<cv::Point> matchedPairs; // 存放匹配到的跟踪框与检测框
        for (unsigned int i = 0; i < trkNum; ++i) {
            if (assignment[i] == -1) { 
                continue;   // assignment[i] == -1 过滤掉无效的值
            }
            if (1 - iouMatrix[i][assignment[i]] < iouThreshold) {
                unMatchedTrajectories.insert(i);            // 未匹配预测id
                unMatchedDetections.insert(assignment[i]);  // 未匹配检测id
            }
            else {
                matchedPairs.push_back(cv::Point(i, assignment[i]));
            }
        }
        // 4、更新修正
        UpdateTrack(predictBox, detectData, matchedPairs);

        // 管理未匹配的检测框航迹 
        for (auto umd : unMatchedDetections) { 
            ManageTrack(detectData, umd);   // 重新管理航迹信息
        }
    }
}

// 4、更新修正
void Tracking::UpdateTrack(std::vector<PredictBox> predictBox, std::vector<TrackingBox> detectData, std::vector<cv::Point> matchedPairs)
{
    // trackers:当前所有航迹, predictBox:当前所有预测box、state, detectData:当前帧检测信息, matchedPairs:匹配完成后得到的索引
    int trkIdx, detIdx; //trkIdx:对应的预测框索引 detIdx:对应的检测框索引 
    for (unsigned int i = 0; i < matchedPairs.size(); i++) {
        trkIdx = matchedPairs[i].x; // 预测索引
        detIdx = matchedPairs[i].y; // 检测索引
        trackers[trkIdx].kBox.update(detectData[detIdx].box); // 更新修正box
        float pixeX = detectData[detIdx].box.x + detectData[detIdx].box.width / 2, pixeY = detectData[detIdx].box.y + detectData[detIdx].box.height;
        trackers[trkIdx].state = GetPosition(pixeX, pixeY);
    }
}

// 5、内部获得跟踪消息
void Tracking::PublishTrackMessage()
{
    std::vector<TrackerResult> trackerResults;
    for (auto it = trackers.begin(); it != trackers.end();) {  
        cv::Rect_<float> kBox = (*it).kBox.GetState();
        std::vector<float> rState = (*it).state;    // 状态值 x,y
        // 此区间的目标才发布
        if (rState[0] > 0 && rState[0] < 50 && rState[1] > -20 && rState[1] < 20) {
            TrackerResult trackerResult;
            trackerResult.label = (*it).label;   // 标签   
            trackerResult.score = (*it).score;   // 置信度
            trackerResult.id = (*it).id;         // id
            trackerResult.position = {rState[0], rState[1], 0}; // 世界坐标相对车位置,xyz z默认为0    单位m
            trackerResult.box = {kBox.x, kBox.y, kBox.x + kBox.width, kBox.y + kBox.height};   
            trackerResults.push_back(trackerResult);
        }
        it++;
    }
    TrackerMessage trackerMessage;
    trackerMessage.trackerResults = trackerResults;
    mTrackerMessage = std::make_shared<TrackerMessage>(trackerMessage); // 得到跟踪信息
}

float Tracking::GetIOU(cv::Rect_<float> boxA, cv::Rect_<float> boxB)
{   
    // boxA:A图像框, boxB:B图像框
	float in = (boxA & boxB).area();    // A框与B框交集面积
	float un = boxA.area() + boxB.area() - in;  // A框与B框并集面积
	if (un < DBL_EPSILON) {
		return 0;
    }
    float result = in / un;    // 获取iou 交并比
	return result;  
}

// 计算距离
std::vector<float> Tracking::GetPosition(float x, float y)
{
    std::vector<float> position = GetWorldPosition(y, x, mDisInit);  // 根据图像像素获取世界位置 x,y相对于车体
    return position;
}

std::vector<float> Tracking::GetWorldPosition(float pixeY, float pixeX, std::shared_ptr<DisInit> disInit) 
{
	// pixeY:像素坐标y, pixeX:像素坐标x, disInit:相机参数内外参
	float sigma = atan((pixeY - disInit->mtx[5]) / disInit->mtx[4]);	// 计算目标与相机的夹角 纵向
	float z = disInit->h * cos(sigma) / sin(sigma + disInit->pitch); // 计算目标到相机的深度
	float newX = 2 * disInit->mtx[2] - pixeX;
	float newY = 2 * disInit->mtx[5] - pixeY;
	float cameraX = z * (newX / disInit->mtx[0] - disInit->mtx[2] / disInit->mtx[0]), 
			cameraY = z * (newY / disInit->mtx[4] - disInit->mtx[5] / disInit->mtx[4]), 
			cameraZ = z;	// 相机坐标系下的camera_x,camera_y,caemra_z
	float x = disInit->r[0] * cameraX + disInit->r[1] * cameraY + disInit->r[2] * cameraZ + disInit->t[0]; // 相对车体x方向距离
	float y = disInit->r[3] * cameraX + disInit->r[4] * cameraY + disInit->r[5] * cameraZ + disInit->t[1]; // 相对车体y方向距离
	return {x, y}; 
}
  • Tracking.h
#pragma once
#include "Hungarian.h"
#include "KalmanTracker.h"
#include "TrackingInfo.h"

class Tracking
{
public:
    Tracking(){}    
    
    // 初始化
    bool InitData(std::shared_ptr<DisInit> disInit);   

    // 反初始化
    void Uninit();

    // 输入接口             
    void SetInputTrackingMessage(std::shared_ptr<DetectInfo> objectMessage);

    // 目标跟踪计算
    void TargetTracking();

    // 输出接口             输出trackingmessage目标跟踪发布的消息
    std::shared_ptr<TrackerMessage> GetOutputTrackingMessage();

private:
    typedef struct TrackingBox
    {
        int label;                      // 目标标签
        float score;                    // 置信度
        int id;                         // 目标id
        cv::Rect_<float> box;           // 目标框
    }TrackingBox;   

    typedef struct StateBox
    {
        int id;                         // 目标id
        int label;                      // 目标标签
        float score;                    // 置信度
	    KalmanTracker kBox;             // 目标框 类型同cv::Rect_<float>
	    std::vector<float> state;       // 目标状态 x,y
    }StateBox;

    typedef struct PredictBox
    {
        int label;                      // 目标标签
	    cv::Rect_<float> box;           // 跟踪预测框
	    std::vector<float> state;       // 目标状态 x,y
    }PredictBox;

    std::vector<TrackingBox> SaveObjectMessage(std::shared_ptr<DetectInfo> objectMessage);                                          // 目标检测信息
    void ManageTrack( std::vector<TrackingBox> detectData, int index);                                                              // 1、管理航迹
    std::vector<PredictBox> PredictTrack();                                                                                         // 2、预测航迹
    void MatchUpdateTrack(std::vector<PredictBox> predictBox, std::vector<TrackingBox> detectData);                                 // 3、匹配 && 4、更新                                                         
    void UpdateTrack(std::vector<PredictBox> predictBox, std::vector<TrackingBox> detectData, std::vector<cv::Point> matchedPairs); // 4、更新
    void PublishTrackMessage();                                                                                                     // 5、内部获得目标跟踪消息
    float GetIOU(cv::Rect_<float> boxA, cv::Rect_<float> boxB);                                         // 获取两个框的iou:交并比
    std::vector<float> GetPosition(float x, float y);                                                   // 计算距离
    std::vector<float> GetWorldPosition(float pixeY, float pixeX, std::shared_ptr<DisInit> disInit);    // 距离计算公式 

private:
    std::shared_ptr<DisInit> mDisInit = std::make_shared<DisInit>();                          // 初始化参数
    std::shared_ptr<DetectInfo> mObjectMessage = std::make_shared<DetectInfo>();              // 需要输入目标检测信息
    std::shared_ptr<TrackerMessage> mTrackerMessage = std::make_shared<TrackerMessage>();     // 获得目标跟踪的信息
    std::vector<StateBox> trackers;                                                           // 航迹
    int frameCount = 0;                                                // 图像的帧数记录
    int maxAge = 1;                                                    // 允许跟踪连续未匹配到的最大帧数
    float iouThreshold = 0.35;                                         // iou匹配最小不能小于1-iouThreshold
    int imageWidth = 1920;                                             // 图片像素宽
    int imageHeight = 1080;                                            // 图片像素高
    int idCount = 0;                                                   // id 计数
    // 畸变校正后对应的像素点
    std::vector<std::vector<cv::Point2d>> mPoints;     
};

2.2、KalmanTracking

这部分主要是调用 opencv kalman代码。状态、状态转移方程可以自己设定。

函数解释
initKf数据初始化。定义box状态、状态转移方程,中心点,宽高比,高。初始化。初始化方差、测量误差、噪声误差等
predict状态预测,kf是opencv中的cv::KalmanFilter。
update修正状态,跟新当前框状态

predict与update要结合理解。

mTimeSinceUpdate上次更新后的预测次数,通过这个参数可以舍弃一些长期未更新的框。

mAge 从出生到现在的年龄(帧数)

mHitStreak 连续更新次数

mHits 历史总更新次数

  • KalmanTracker.cpp
#include "KalmanTracker.h"

// initialize Kalman filter
void KalmanTracker::initKf(StateType stateMat)
{
	int stateNum = 8;	// 状态
	int measureNum = 4;	// 测量
	kf = cv::KalmanFilter(stateNum, measureNum, 0);
	measurement = cv::Mat::zeros(measureNum, 1, CV_32F);
	// 状态转移方程 中心点x,y,框的宽高比r,框的高h,vx,vy,vr,vh 
	kf.transitionMatrix = (cv::Mat_<float>(stateNum, stateNum) <<
		1, 0, 0, 0, 1, 0, 0, 0,
		0, 1, 0, 0, 0, 1, 0, 0,
		0, 0, 1, 0, 0, 0, 1, 0,
		0, 0, 0, 1, 0, 0, 0, 1,
		0, 0, 0, 0, 1, 0, 0, 0,
		0, 0, 0, 0, 0, 1, 0, 0,
		0, 0, 0, 0, 0, 0, 1, 0,
		0, 0, 0, 0, 0, 0, 0, 1);
	setIdentity(kf.measurementMatrix);
	setIdentity(kf.processNoiseCov, cv::Scalar::all(1e-2));
	setIdentity(kf.measurementNoiseCov, cv::Scalar::all(1e-1));
	setIdentity(kf.errorCovPost, cv::Scalar::all(1));
	
	// initialize state vector with bounding box in [cx,cy,r,h] style
	kf.statePost.at<float>(0, 0) = stateMat.x + stateMat.width / 2;		// 中心点x
	kf.statePost.at<float>(1, 0) = stateMat.y + stateMat.height / 2;	// 中心点y
	kf.statePost.at<float>(2, 0) = stateMat.width / stateMat.height;	// 框的宽高比
	kf.statePost.at<float>(3, 0) = stateMat.height;						// 框的高度
}

// 预测框的位置
StateType KalmanTracker::predict()
{
	// predict
	mUpdateOrPredict = 0;	// 预测的时候为0
	cv::Mat p = kf.predict();	// 预测
	mAge += 1;	// 历史预测次数+1
	// 当上次没更新时连续更新的次数清0	
	if (mTimeSinceUpdate > 0) {	
		mHitStreak = 0;	
	}
	mTimeSinceUpdate += 1;	// 从上一次更新起 连续预测次数+1
	StateType predictBox = GetRectXYSR(p.at<float>(0, 0), p.at<float>(1, 0), p.at<float>(2, 0), p.at<float>(3, 0));
	mHistory.push_back(predictBox);	// 存放历史的box
	return mHistory.back();
}

// 更新框的位置
void KalmanTracker::update(StateType stateMat)
{
	mTimeSinceUpdate = 0;	
	mUpdateOrPredict = 1;	// 更新的时候为1
	mHistory.clear();	// 清空历史的box
	mHits += 1;  // 历史更新次数+1
	mHitStreak += 1;
	// 当前测量值的中心点cx,cy,r,h
	measurement.at<float>(0, 0) = stateMat.x + stateMat.width / 2;
	measurement.at<float>(1, 0) = stateMat.y + stateMat.height / 2;
	measurement.at<float>(2, 0) = stateMat.width / stateMat.height;
	measurement.at<float>(3, 0) = stateMat.height;
	// update
	kf.correct(measurement);
}

StateType KalmanTracker::GetState(StateType stateMat)
{
	return stateMat;
}

// Return the current state vector
StateType KalmanTracker::GetState()
{	
	cv::Mat s = kf.statePost;
	return GetRectXYSR(s.at<float>(0, 0), s.at<float>(1, 0), s.at<float>(2, 0), s.at<float>(3, 0));
}

// Convert bounding box from [cx,cy,r,h] to [x,y,w,h] style.
StateType KalmanTracker::GetRectXYSR(float cx, float cy, float r, float h)
{
	// 返回原始类型cv::Rect_<float> x,y,w,h
	float w = r * h;
	float x = (cx - w / 2);
	float y = (cy - h / 2);
	if (x < 0 && cx > 0) {
		x = 0;
	}
	if (y < 0 && cy > 0) {
		y = 0;
	}
	return StateType(x, y, w, h);
}
  • KalmanTracker.h
#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"

#define StateType cv::Rect_<float>	// 接收cv::Rect_<float>类型的box


class KalmanTracker
{
public:
	KalmanTracker()
	{
		initKf(StateType());
		mTimeSinceUpdate = 0;						// 从上一次更新起总预测次数 
		mHits = 0;									// 历史总更新次数
		mHitStreak = 0;								// 连续更新的次数
		mAge = 0;									// 历史总预测次数
	}
	KalmanTracker(StateType initRect)
	{
		initKf(initRect);
		mTimeSinceUpdate = 0;						// 从上一次更新起连续预测次数 
		mHits = 0;									// 历史总更新次数
		mHitStreak = 0; 							// 连续更新的次数
		mAge = 0;									// 历史总预测次数
	}
	~KalmanTracker()
	{
		mHistory.clear();
	}
	StateType predict();
	void update(StateType stateMat);
	StateType GetState();
	StateType GetState(StateType stateMat);
	StateType GetRectXYSR(float cx, float cy, float s, float r);

	int mTimeSinceUpdate;											// 离最近一次更新 连续预测的次数
	int mUpdateOrPredict; 											// 判断此框状态 update为1 predict为0
	int mHits;														// 历史总更新次数
	int mHitStreak;													// 连续更新的次数
	int mAge;														// 历史总预测次数
	cv::KalmanFilter kf;

private:
	void initKf(StateType stateMat);
	cv::Mat measurement;
	std::vector<StateType> mHistory;								// 存放历史的box	
};

2.3、Hungarian

这部分是匈牙利算法,简单来说就是根据权重选取全局最优的匹配结果。这部分原理不难理解,可以参考博主往期博客 匈牙利算法

代码写起来其实还是稍微有点难度,这里直接借用开源已有代码。

  • Hungarian.cpp
#ifndef DBL_EPSILON
#define DBL_EPSILON      2.2204460492503131e-016
#endif

#ifndef DBL_MAX
#define DBL_MAX          1.7976931348623158e+308
#endif

#include "Hungarian.h"

HungarianAlgorithm::HungarianAlgorithm(){}
HungarianAlgorithm::~HungarianAlgorithm(){}


//********************************************************//
// A single function wrapper for solving assignment problem.
//********************************************************//
double HungarianAlgorithm::Solve(std::vector<std::vector<double>>& DistMatrix, std::vector<int>& Assignment)
{
	unsigned int nRows = DistMatrix.size();
	unsigned int nCols = DistMatrix[0].size();

	double *distMatrixIn = new double[nRows * nCols];
	int *assignment = new int[nRows];
	double cost = 0.0;

	for (unsigned int i = 0; i < nRows; i++)
		for (unsigned int j = 0; j < nCols; j++)
			distMatrixIn[i + nRows * j] = DistMatrix[i][j];
	
	// call solving function
	assignmentoptimal(assignment, &cost, distMatrixIn, nRows, nCols);

	Assignment.clear();
	for (unsigned int r = 0; r < nRows; r++)
		Assignment.push_back(assignment[r]);

	delete[] distMatrixIn;
	delete[] assignment;
	return cost;
}


//********************************************************//
// Solve optimal solution for assignment problem using Munkres algorithm, also known as Hungarian Algorithm.
//********************************************************//
void HungarianAlgorithm::assignmentoptimal(int *assignment, double *cost, double *distMatrixIn, int nOfRows, int nOfColumns)
{
	double *distMatrix, *distMatrixTemp, *distMatrixEnd, *columnEnd, value, minValue;
	bool *coveredColumns, *coveredRows, *starMatrix, *newStarMatrix, *primeMatrix;
	int nOfElements, minDim, row, col;

	/* initialization */
	*cost = 0;
	for (row = 0; row<nOfRows; row++)
		assignment[row] = -1;

	nOfElements = nOfRows * nOfColumns;
	distMatrix = (double *)malloc(nOfElements * sizeof(double));
	distMatrixEnd = distMatrix + nOfElements;

	for (row = 0; row < nOfElements; row++)
	{
		value = distMatrixIn[row];
		if (value < 0)
			std::cerr << "All matrix elements have to be non-negative." << std::endl;
		distMatrix[row] = value;
	}

	/* memory allocation */
	coveredColumns = (bool *)calloc(nOfColumns, sizeof(bool));
	coveredRows = (bool *)calloc(nOfRows, sizeof(bool));
	starMatrix = (bool *)calloc(nOfElements, sizeof(bool));
	primeMatrix = (bool *)calloc(nOfElements, sizeof(bool));
	newStarMatrix = (bool *)calloc(nOfElements, sizeof(bool)); /* used in step4 */

	/* preliminary steps */
	if (nOfRows <= nOfColumns)
	{
		minDim = nOfRows;

		for (row = 0; row < nOfRows; row++)
		{
			/* find the smallest element in the row */
			distMatrixTemp = distMatrix + row;
			minValue = *distMatrixTemp;
			distMatrixTemp += nOfRows;
			while (distMatrixTemp < distMatrixEnd)
			{
				value = *distMatrixTemp;
				if (value < minValue)
					minValue = value;
				distMatrixTemp += nOfRows;
			}

			/* subtract the smallest element from each element of the row */
			distMatrixTemp = distMatrix + row;
			while (distMatrixTemp < distMatrixEnd)
			{
				*distMatrixTemp -= minValue;
				distMatrixTemp += nOfRows;
			}
		}

		/* Steps 1 and 2a */
		for (row = 0; row < nOfRows; row++)
			for (col = 0; col < nOfColumns; col++)
				if (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON)
					if (!coveredColumns[col])
					{
						starMatrix[row + nOfRows * col] = true;
						coveredColumns[col] = true;
						break;
					}
	}
	else /* if(nOfRows > nOfColumns) */
	{
		minDim = nOfColumns;

		for (col = 0; col < nOfColumns; col++)
		{
			/* find the smallest element in the column */
			distMatrixTemp = distMatrix + nOfRows*col;
			columnEnd = distMatrixTemp + nOfRows;

			minValue = *distMatrixTemp++;
			while (distMatrixTemp < columnEnd)
			{
				value = *distMatrixTemp++;
				if (value < minValue)
					minValue = value;
			}

			/* subtract the smallest element from each element of the column */
			distMatrixTemp = distMatrix + nOfRows*col;
			while (distMatrixTemp < columnEnd)
				*distMatrixTemp++ -= minValue;
		}

		/* Steps 1 and 2a */
		for (col = 0; col < nOfColumns; col++)
			for (row = 0; row < nOfRows; row++)
				if (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON)
					if (!coveredRows[row])
					{
						starMatrix[row + nOfRows * col] = true;
						coveredColumns[col] = true;
						coveredRows[row] = true;
						break;
					}
		for (row = 0; row<nOfRows; row++)
			coveredRows[row] = false;

	}

	/* move to step 2b */
	step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);

	/* compute cost and remove invalid assignments */
	computeassignmentcost(assignment, cost, distMatrixIn, nOfRows);

	/* free allocated memory */
	free(distMatrix);
	free(coveredColumns);
	free(coveredRows);
	free(starMatrix);
	free(primeMatrix);
	free(newStarMatrix);
	return;
}

/********************************************************/
void HungarianAlgorithm::buildassignmentvector(int *assignment, bool *starMatrix, int nOfRows, int nOfColumns)
{
	int row, col;

	for (row = 0; row < nOfRows; row++)
		for (col = 0; col < nOfColumns; col++)
			if (starMatrix[row + nOfRows * col])
			{
#ifdef ONE_INDEXING
				assignment[row] = col + 1; /* MATLAB-Indexing */
#else
				assignment[row] = col;
#endif
				break;
			}
}

/********************************************************/
void HungarianAlgorithm::computeassignmentcost(int *assignment, double *cost, double *distMatrix, int nOfRows)
{
	int row, col;

	for (row = 0; row < nOfRows; row++)
	{
		col = assignment[row];
		if (col >= 0)
			*cost += distMatrix[row + nOfRows * col];
	}
}

/********************************************************/
void HungarianAlgorithm::step2a(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
	bool *starMatrixTemp, *columnEnd;
	int col;

	/* cover every column containing a starred zero */
	for (col = 0; col < nOfColumns; col++)
	{
		starMatrixTemp = starMatrix + nOfRows*col;
		columnEnd = starMatrixTemp + nOfRows;
		while (starMatrixTemp < columnEnd) {
			if (*starMatrixTemp++)
			{
				coveredColumns[col] = true;
				break;
			}
		}
	}

	/* move to step 3 */
	step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}

/********************************************************/
void HungarianAlgorithm::step2b(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
	int col, nOfCoveredColumns;

	/* count covered columns */
	nOfCoveredColumns = 0;
	for (col = 0; col < nOfColumns; col++)
		if (coveredColumns[col])
			nOfCoveredColumns++;

	if (nOfCoveredColumns == minDim)
	{
		/* algorithm finished */
		buildassignmentvector(assignment, starMatrix, nOfRows, nOfColumns);
	}
	else
	{
		/* move to step 3 */
		step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
	}

}

/********************************************************/
void HungarianAlgorithm::step3(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
	bool zerosFound;/* generate working copy of distance Matrix */
	/* check if all matrix elements are positive */
	int row, col, starCol;

	zerosFound = true;
	while (zerosFound)
	{
		zerosFound = false;
		for (col = 0; col < nOfColumns; col++)
			if (!coveredColumns[col])
				for (row = 0; row < nOfRows; row++)
					if ((!coveredRows[row]) && (fabs(distMatrix[row + nOfRows * col]) < DBL_EPSILON))
					{
						/* prime zero */
						primeMatrix[row + nOfRows*col] = true;

						/* find starred zero in current row */
						for (starCol = 0; starCol < nOfColumns; starCol++)
							if (starMatrix[row + nOfRows * starCol])
								break;

						if (starCol == nOfColumns) /* no starred zero found */
						{
							/* move to step 4 */
							step4(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim, row, col);
							return;
						}
						else
						{
							coveredRows[row] = true;
							coveredColumns[starCol] = false;
							zerosFound = true;
							break;
						}
					}
	}

	/* move to step 5 */
	step5(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}

/********************************************************/
void HungarianAlgorithm::step4(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col)
{
	int n, starRow, starCol, primeRow, primeCol;
	int nOfElements = nOfRows * nOfColumns;

	/* generate temporary copy of starMatrix */
	for (n = 0; n < nOfElements; n++)
		newStarMatrix[n] = starMatrix[n];

	/* star current zero */
	newStarMatrix[row + nOfRows * col] = true;

	/* find starred zero in current column */
	starCol = col;
	for (starRow = 0; starRow<nOfRows; starRow++)
		if (starMatrix[starRow + nOfRows * starCol])
			break;

	while (starRow < nOfRows)
	{
		/* unstar the starred zero */
		newStarMatrix[starRow + nOfRows * starCol] = false;

		/* find primed zero in current row */
		primeRow = starRow;
		for (primeCol = 0; primeCol < nOfColumns; primeCol++)
			if (primeMatrix[primeRow + nOfRows * primeCol])
				break;

		/* star the primed zero */
		newStarMatrix[primeRow + nOfRows * primeCol] = true;

		/* find starred zero in current column */
		starCol = primeCol;
		for (starRow = 0; starRow < nOfRows; starRow++)
			if (starMatrix[starRow + nOfRows * starCol])
				break;
	}

	/* use temporary copy as new starMatrix */
	/* delete all primes, uncover all rows */
	for (n = 0; n < nOfElements; n++)
	{
		primeMatrix[n] = false;
		starMatrix[n] = newStarMatrix[n];
	}
	for (n = 0; n < nOfRows; n++)
		coveredRows[n] = false;

	/* move to step 2a */
	step2a(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}

/********************************************************/
void HungarianAlgorithm::step5(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
{
	double h, value;
	int row, col;

	/* find smallest uncovered element h */
	h = DBL_MAX;
	for (row = 0; row < nOfRows; row++)
		if (!coveredRows[row])
			for (col = 0; col < nOfColumns; col++)
				if (!coveredColumns[col])
				{
					value = distMatrix[row + nOfRows * col];
					if (value < h)
						h = value;
				}

	/* add h to each covered row */
	for (row = 0; row < nOfRows; row++)
		if (coveredRows[row])
			for (col = 0; col < nOfColumns; col++)
				distMatrix[row + nOfRows * col] += h;

	/* subtract h from each uncovered column */
	for (col = 0; col < nOfColumns; col++)
		if (!coveredColumns[col])
			for (row = 0; row < nOfRows; row++)
				distMatrix[row + nOfRows * col] -= h;

	/* move to step 3 */
	step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
}
  • Hungarian.h
#pragma once
#include <iostream>
#include <vector>
#include <stdlib.h>
#include <math.h>


class HungarianAlgorithm
{
public:
	HungarianAlgorithm();
	~HungarianAlgorithm();
	double Solve(std::vector<std::vector<double>>& DistMatrix, std::vector<int>& Assignment);

private:
	void assignmentoptimal(int *assignment, double *cost, double *distMatrix, int nOfRows, int nOfColumns);
	void buildassignmentvector(int *assignment, bool *starMatrix, int nOfRows, int nOfColumns);
	void computeassignmentcost(int *assignment, double *cost, double *distMatrix, int nOfRows);
	void step2a(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
	void step2b(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
	void step3(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
	void step4(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col);
	void step5(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
};

2.4、TrackingInfo

TrackingInfo.h 文件数据格式。

  • TrackingInfo.h
#pragma once
#include <string>
#include <vector>
#include <memory>
#include <set>


/*
 * 目标检测信息
 */
typedef struct DetBox
{
	float x; 			// xy左上角坐标  
	float y;
	float w; 			// wh目标长宽(已复原到原图坐标)
	float h;
	int type; 			// 当前类别 "pedestrian","car", "bus","truck", "cyclist", "motorcyclist", "tricyclist", 
	float score; 		// score = ObjConf * ClsConf
}DetBox;

typedef struct DetectInfo
{
	std::vector<DetBox> boxes;
}DetectInfo;

/*
 * 目标跟踪初始化
 */
typedef struct DisInit
{
    float h;                    // 相机离地面距离
    float pitch;                // 俯仰角
    std::vector<double> mtx;    // 内参矩阵
    std::vector<double> dist;   // 畸变系数
    std::vector<double> r;      // 相机外参,相对于车体 旋转矩阵
    std::vector<double> t;      // 相机外参,相对于车体 平移矩阵
}DisInit;

/*
 * 目标跟踪信息
 */
typedef struct TrackerImageInfo
{
    std::string sensor;         // 关联那个传感器如:“head_camera”
    int framecnt;               // 图片的帧数
    double timestamp;           // 图片的时间戳
}TrackerImageInfo;

typedef struct TrackerResult
{
    int label;                              // 目标标签
    float score;                            // 置信度
    int id;                                 // 目标id
    std::vector<float> position;            // 目标的位置 x,y
    std::vector<float> box;                 // x1,y1,x2,y2
}TrackerResult;

typedef struct TrackerMessage
{
    std::vector<TrackerResult> trackerResults; 
}TrackerMessage;

三、调用示例

  1. Tracking tracking;
  2. tracking.InitData(std::make_shared(cameraParam)); // 初始化获取相机内外参
  3. 计算获取结果
    for (int fi = 1; fi < FrameCount; fi++) {
    tracking.SetInputTrackingMessage(std::make_shared(detBox)); // 输入当前帧检测信息
    tracking.TargetTracking(); // 计算
    TrackerMessage messageResult = *tracking.GetOutputTrackingMessage(); // 获取当前帧跟踪输出结果
    }

四、结果

在这里插入图片描述

在对一些目标做一些跟踪定位,或者对单个目标,在不需要严格跟踪的场景下,效果还是不错。关键是简单实用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/394772.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 Vue3 中的 setup 函数

&#x1f497;&#x1f497;&#x1f497;欢迎来到我的博客&#xff0c;你将找到有关如何使用技术解决问题的文章&#xff0c;也会找到某个技术的学习路线。无论你是何种职业&#xff0c;我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章&#xff0c;也欢…

文章复现 | 差异分析和PPI网络构建

原文链接&#xff1a;差异分析和PPI网路图绘制教程 写在前面 在原文中&#xff0c;作者获得285个DEG&#xff0c;在此推文中共获得601个DEG。小杜的猜想是标准化的水段不同的原因吧&#xff0c;或是其他的原因。此外&#xff0c;惊奇的发现发表医学类的文章在附件中都不提供相…

快速入门:简单几步教你如何打开 JSON 文件

在当今的开发环境中&#xff0c;无论是前端还是后端开发者&#xff0c;几乎都会碰到需要处理 JSON&#xff08;JavaScript Object Notation&#xff09;文件的情况。JSON 格式因其轻量级、易于人阅读的结构而成为数据交换的首选格式。 什么是 JSON&#xff1f; JSON&#xff…

【数据库】Mysql索引

1、什么是索引&#xff1f;为什么要用索引&#xff1f; 1.1、索引的含义 数据库索引&#xff0c;是数据库管理系统中一个排序的数据结构&#xff0c;以协助快速查询&#xff0c;更新数据库中表的数据。索引的实现通常使用B树和变种的B树&#xff08;MySQL常用的索引就是B树&am…

MyBatis基础学习

一、MyBatis简介 二、MyBatis-HelloWorld 三、MyBatis-全局配置文件 四、MyBatis-映射文件 五、MyBatis-动态SQL 六、MyBatis-缓存机制 七、MyBatis-Spring整合 八、MyBatis-逆向工程 九、MyBatis-工作原理 十、MyBatis-插件开发

prometheus基于consul的服务发现

文章目录 一、基础二、安装consul下载地址启动consul访问consul 三、编写服务发现文件nodes.json四、prometheus配置consul发现修改prometheus.yml重启Prometheus 参考 一、基础 二、安装consul 下载地址 https://developer.hashicorp.com/consul/install 启动consul mkdi…

【深度优先搜索】【树】【有向图】【推荐】685. 冗余连接 II

LeetCode685. 冗余连接 II 在本问题中&#xff0c;有根树指满足以下条件的 有向 图。该树只有一个根节点&#xff0c;所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节点都有且只有一个父节点&#xff0c;而根节点没有父节点。 输入一个有向图&#xff0c;该图由…

C#上位机与三菱PLC的通信07--使用第3方通讯库读写数据

1、通讯库介绍 mcprotocol 是一个基于 Node.js 的三菱 PLC MC 协议通信库&#xff0c;具有以下特点&#xff1a; 支持多种三菱 PLC MC 协议的设备&#xff0c;如 FX3U、Q03UDECPU、QJ71E71 等。 支持多种功能码和数据类型&#xff0c;如读取线圈&#xff08;M&#xff09;、…

工具:clang-format使用

Visual Studio 在扩展-》管理扩展-》联机-》搜索Format on Save (for VS2022)插件&#xff0c;并安装 安装需要关闭VS&#xff0c;安装后重新打开vs。 这样每次保存源文件时就会自动调用vs默认的clang-format.exe对源码进行缩进&#xff0c;空格等进行格式化 如果想使用自定…

MT8781核心板_MTK8781安卓核心板规格参数

MT8781安卓核心板以其强大的性能和高效的能耐备受瞩目。其八核CPU架构包括(2x Cortex-A76 2.2GHz 6x Cortex-A55 2.0GHz)&#xff0c;以及高性能的Arm Mali G57级GPU。同时&#xff0c;配备高达2,133MHz的LPDDR4X内存和快速的UFS 2.2级存储&#xff0c;大大加速了数据访问速…

定制红酒:为客户创造与众不同的品鉴体验

品鉴红酒不仅仅是为了享受美酒&#xff0c;更是一种生活方式的体现。云仓酒庄洒派深知这一点&#xff0c;并致力于为客户创造与众不同的品鉴体验。 1. 专业品鉴指导 云仓酒庄洒派拥有一支专业的品鉴团队&#xff0c;为客户提供详细的品鉴指导。无论是对于红酒的基本知识、品鉴…

qlv转mp4怎么操作?打破格式限制,转换技巧大揭秘

在数字媒体的世界里&#xff0c;视频格式的转换已成为我们日常生活中的常见需求。其中&#xff0c;将腾 讯视频特有的qlv格式转换为更通用的mp4格式&#xff0c;是许多用户面临的挑战。如何快速、高效地完成qlv转mp4&#xff1f;本文将为你揭开转换技巧的神秘面纱&#xff0c;让…

PMP和软件高项哪个含金量高?

PMP认证和高项二者可以说有相似之处又有不同之处&#xff0c;在知识点的方面他们的接触面非常广泛&#xff0c;多至80%&#xff0c;而在作用和适用方向上二者就有比较大些的区别&#xff0c;至于考哪个不考哪个的问题我身为过来人还是不建议去多想的&#xff0c;两个都照杀&…

【Linux】进程间通信——共享内存

文章目录 共享内存的概要创建共享内存shmget()参数keyshmget()参数sizeshmget()参数shmflg 删除共享内存挂载共享内存去关联 共享内存的概要 共享内存允许两个不相关的进程访问同一个逻辑内存。共享内存是在两个正在运行的进程之间传递数据的一种非常有效的方式。不同进程之间…

多维时序 | Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测

多维时序 | Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测 目录 多维时序 | Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间…

Eclipse - Formatter

Eclipse - Formatter References Window -> Preferences -> C/C -> Code Style -> Formatter BSD/Allman [built-in] or K& R [built-in] References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

电脑卡住不动了怎么办?三招解救你的电脑!

电脑卡住不动是一种常见的故障&#xff0c;可能会给用户带来困扰。这种情况可能由于多种原因引起&#xff0c;包括软件问题、硬件故障或系统错误。那么&#xff0c;电脑卡住不动了怎么办呢&#xff1f;在本文中&#xff0c;我们将介绍电脑卡住不动的可能原因&#xff0c;并提供…

Itext生成pdf文件,html转pdf时中文一直显示不出来

之前使用freemark模板渲染ftl页面,转出的pdf中&#xff0c;css2的很多样式好像不支持 改造成使用html页面来转pdf&#xff0c;css2的样式可以生效,itext是不支持css3的弹性布局的ITextRenderer pdfRenderer new ITextRenderer();// 添加字体设置ITextFontResolver fontResolve…

微信小程序 点击右上角三个点 当前页面未设置分享

js文件中添加 //用户点击右上角分享朋友圈 onShareTimeline () { },

RSA加密解密(二)——用shell加密后java无法解密的问题

我们需要用shell生成加密原文数据&#xff0c;存入mysql中&#xff0c;然后用java取出mysql中的加密数据并解密出原文。 这个任务中遇到的最大问题是&#xff0c;用shell进行base64编码后的加密数据&#xff0c;无法被java的解密程序解密&#xff0c;会报错。 Exception in t…