基于Nonconvex规划的配电网重构研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文基于Nonconvex规划的配电网重构研究。并用Matlab代码实现之。

基于Nonconvex规划的配电网重构研究是针对配电网优化问题的一种方法。传统的配电网通常是基于线性或者凸规划进行设计和运行,但是实际配电网系统的复杂性往往导致非线性和非凸问题的出现。为解决这些问题,基于Nonconvex规划的方法被提出来更好地优化配电网系统。

配电网重构是指通过变换网络拓扑结构和配置设备参数,以改善配电网的性能和可靠性。基于Nonconvex规划的配电网重构研究通常包括以下几个方面:

1. 非线性建模:将配电网系统建模为非线性的数学模型。这包括考虑网络拓扑结构、设备参数、电流限制、电压限制等的非线性方程和约束条件。

2. 问题定义:明确定义配电网重构的目标,例如最小化损耗、提高电压稳定性、降低网络阻塞等。同时,考虑到配电网的约束条件,例如设备的额定容量、电压限制、工作模式等。

3. Nonconvex规划建模:将配电网重构问题转化为Nonconvex规划问题。这可能涉及到非线性约束和非凸目标函数,并且由于配电网的复杂性,问题可能具有多个局部最优解。

4. 优化算法:针对Nonconvex规划问题,需要选择适当的优化算法来求解最优解。常见的算法包括非线性规划算法、启发式算法(如遗传算法、粒子群算法等)以及近似方法等。这些算法可以搜索到全局或者局部最优解。

5. 结果分析和评估:根据求解得到的最优解,分析和评估配电网的性能指标。这可能包括网络损耗、电压稳定性、负荷均衡等方面的评估。

6. 重构方案实施:根据优化结果,制定并实施配电网重构方案。这可能涉及到改变配电网的拓扑结构、设备配置、控制策略等。

基于Nonconvex规划的配电网重构研究能够更好地应对实际配电网系统的复杂性,帮助提高能源利用效率,降低电力系统的运行成本,并提高系统的可靠性和稳定性。然而,由于Nonconvex规划问题的复杂性,求解过程可能较为困难,需要综合考虑求解效率和解的质量。

📚2 运行结果

14147.3秒得到了全局最优,网损为1.7430,AA=[1;1;1;1;1;1;0;1;0;1;1;1;1;0;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;0;1;1;1;1;0]

部分代码:

%SB=100MVA,UB=12.66kV,IEEE-33 Bus,Distflow SOC-ACOPF
%考虑重构,全天拓扑不变
clear
clc
tic
%网络数据,标幺值
Pload=。。。
Line(:,3)=Line(:,3)*100/(12.66^2);
r=real(Line(:,3));
x=imag(Line(:,3));
father=zeros(33,37);son=zeros(33,37);
for i=1:32
    father(i,i)=1;
end
father(20,33)=1;father(14,34)=1;father(21,35)=1;father(32,36)=1;father(28,37)=1;
for i=[1:16,18:20,22:23,25:31]
    son(i,i+1)=1;
end
son(1,18)=1;son(2,22)=1;son(5,25)=1;son(33,1)=1;son(7,33)=1;son(8,34)=1;son(11,35)=1;son(17,36)=1;son(24,37)=1;
Umax=[1.07*1.07*ones(32,24);1.05*1.05*ones(1,24)];
Umin=[0.93*0.93*ones(32,24);1.05*1.05*ones(1,24)];
Pgmax=[zeros(32,24);ones(1,24)];
Qgmax=[zeros(32,24);ones(1,24)];
%定义变量
P=sdpvar(37,24);%线路有功
Q=sdpvar(37,24);%线路无功
U=sdpvar(33,24);%电压的平方
I=sdpvar(37,24);%电流的平方
Pg=[zeros(32,24);sdpvar(1,24)];%发电机有功
Qg=[zeros(32,24);sdpvar(1,24)];%发电机无功
AA=binvar(37,1);%网架结构
A0=[ones(32,1);zeros(5,1)];%初始拓扑
assign(AA,A0);
Pin=-father*P+father*(I.*(r*ones(1,24)))+son*P;%节点注入有功
Qin=-father*Q+father*(I.*(x*ones(1,24)))+son*Q;%节点注入无功
P_tree=sdpvar(37,1);%虚拟有功
Pin_tree=-father*P_tree+son*P_tree;%虚拟节点注入有功
Ploss_total=sum(sum(I.*(r*ones(1,24))));%目标函数,网损最小
%约束条件
C1=[sum(AA)==32,U>=Umin,U<=Umax,Pg>=-Pgmax,Pg<=Pgmax,Qg>=-Qgmax,Qg<=Qgmax,I>=0,I<=0.11*AA*ones(1,24),-AA<=P_tree<=AA,-0.11*AA*ones(1,24)<=P<=0.11*AA*ones(1,24),-0.11*AA*ones(1,24)<=Q<=0.11*AA*ones(1,24)];%边界约束
C2=[Pin+Pload-Pg==0,Pin_tree(1:32)+0.01==0];%有功KCL约束
C3=[Qin+Qload-Qg==0];%无功KCL约束
C4=[-(1.07*1.07-0.93*0.93)*(1-AA)*ones(1,24)<=-U(Line(:,2),:)+U(Line(:,1),:)-2*(r*ones(1,24)).*P-2*(x*ones(1,24)).*Q+((r.^2+x.^2)*ones(1,24)).*I<=(1.07*1.07-0.93*0.93)*(1-AA)*ones(1,24)];%电压降落约束
C=[C1,C2,C3,C4];
toc%建模时间
ops=sdpsettings('solver','gurobi','usex0',1);
[model,recoverymodel,diagnostic,internalmodel] = export(C,Ploss_total,ops);%得到除去P^2+Q^2=UI的约束
params.Nonconvex=2;%启动gurobi非线性求解器
params.FeasibilityTol=1e-9;%由于gurobi采取的是双层模型,因此可行性步长应尽可能小
params.IntFeasTol=1e-9;%由于gurobi对非线性模型采用的是外嵌分支定界算法,相当于求解MIP问题,因此整数可行性要足够精确
params.Threads=8;%并行计算,8线程
L=length(model.obj);%决策变量数
%下面定义P^2+Q^2=UI的约束,模型为sum(Qval*x(Qrow)*x(Qcol))+q*x=rhs
for t=1:24
    for j=1:37
        model.quadcon(37*t-37+j).Qrow=[37*t-37+j,37*t-37+j+37*24,33*t-33+Line(j,1)+37*24*2];%P,Q,Uj
        model.quadcon(37*t-37+j).Qcol=[37*t-37+j,37*t-37+j+37*24,37*t-37+j+37*24*2+33*24];%P,Q,I
        model.quadcon(37*t-37+j).Qval=[1,1,-1];%P^2+Q^2-UI
        model.quadcon(37*t-37+j).q=sparse(L,1);
        model.quadcon(37*t-37+j).rhs=0;
        model.quadcon(37*t-37+j).sense='=';%严格等号

%定义变量
P=sdpvar(37,1);%线路有功
Q=sdpvar(37,1);%线路无功
U=sdpvar(33,1);%电压的平方
I=sdpvar(37,1);%电流的平方
Pg=[zeros(32,1);sdpvar];%发电机有功
Qg=[zeros(32,1);sdpvar];%发电机无功
AA=binvar(37,1);%网架结构
A0=[ones(32,1);zeros(5,1)];%初始拓扑
assign(AA,A0);
Pin=-father*P+father*(I.*r)+son*P;%节点注入有功
Qin=-father*Q+father*(I.*x)+son*Q;%节点注入无功
P_tree=sdpvar(37,1);%虚拟有功
Pin_tree=-father*P_tree+son*P_tree;%虚拟节点注入有功
Ploss_total=sum(I.*r);%目标函数,网损最小
%约束条件
C1=[sum(AA)==32,U>=Umin,U<=Umax,Pg>=-Pgmax,Pg<=Pgmax,Qg>=-Qgmax,Qg<=Qgmax,I>=0,I<=0.11*AA,-AA<=P_tree<=AA,-0.11*AA<=P<=0.11*AA,-0.11*AA<=Q<=0.11*AA];%边界约束
C2=[Pin+Pload-Pg==0,Pin_tree(1:32)+0.01==0];%有功KCL约束
C3=[Qin+Qload-Qg==0];%无功KCL约束
C4=[-(1.07*1.07-0.93*0.93)*(1-AA)<=-U(Line(:,2),:)+U(Line(:,1),:)-2*r.*P-2*x.*Q+(r.^2+x.^2).*I<=(1.07*1.07-0.93*0.93)*(1-AA)];%电压降落约束
C=[C1,C2,C3,C4];
toc%建模时间
ops=sdpsettings('solver','gurobi','usex0',1);
[model,recoverymodel,diagnostic,internalmodel] = export(C,Ploss_total,ops);%得到除去P^2+Q^2=UI的约束
params.Nonconvex=2;%启动gurobi非线性求解器
params.FeasibilityTol=1e-9;%由于gurobi采取的是双层模型,因此可行性步长应尽可能小
params.IntFeasTol=1e-9;%由于gurobi对非线性模型采用的是外嵌分支定界算法,相当于求解MIP问题,因此整数可行性要足够精确
params.Threads=8;%并行计算,8线程
L=length(model.obj);%决策变量数
%下面定义P^2+Q^2=UI的约束,模型为sum(Qval*x(Qrow)*x(Qcol))+q*x=rhs

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘畅,王治邦,黎静华.考虑配电网重构的电-气联合传输网络规划[J].广西大学学报(自然科学版),2023,48(03):616-630.DOI:10.13624/j.cnki.issn.1001-7445.2023.0616.

[2]吴达雷.电动汽车规模化接入后配电网重构系统[J].机械设计与制造工程,2023,52(05):83-86.

[3]吴艳敏,程相,刘家旗.基于SA-CS算法的含分布式电源配电网优化重构[J].科学技术与工程,2023,23(02):626-632.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/39470.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数仓学习---8、数仓开发之ODS层

星光下的赶路人star的个人主页 大鹏一日同风起&#xff0c;扶摇直上九万里 文章目录 一、数仓开发之ODS层1.1 日志表1.2 业务表1.2.1 活动信息表&#xff08;全量表&#xff09;1.2.2 活动规则表&#xff08;全量表&#xff09;1.2.3 一级品类表&#xff08;全量表&#xff09;…

Docker基础(二)

1、Docker工作原理 Docker是一个Clinet-Server结构的系统&#xff0c;Docker守护进程运行在主机上&#xff0c;然后通过Socket连接从客户端访问&#xff0c;守护进程从客户端接受命令并管理运行在主机上的容器。 容器&#xff0c;是一个运行时环境&#xff0c;就是我们前面说的…

Linux6.1 Docker 基本管理

文章目录 计算机系统5G云计算第四章 LINUX Docker 基本管理一、Docker 概述1.概述2.Docker与虚拟机的区别3.容器在内核中支持2种重要技术4.Docker核心概念1&#xff09;镜像2&#xff09;容器3&#xff09;仓库 二、安装 Docker三、Docker 镜像操作四、Docker 容器操作 计算机系…

【软件测试面试】腾讯数据平台笔试题-接口-自动化-数据库

数据库题 答案&#xff1a; Python编程题 答案&#xff1a; 接口参数化题 答案&#xff1a; 接口自动化题 答案&#xff1a; 以下是我收集到的比较好的学习教程资源&#xff0c;虽然不是什么很值钱的东西&#xff0c;如果你刚好需要&#xff0c;可以评论区&#…

家政小程序开发-H5+小程序

移动互联网的发展&#xff0c;微信小程序逐渐成为商家拓展线上业务的重要手段。家政服务作为日常生活中不可或缺的一部分&#xff0c;也开始尝试通过小程序来提高服务质量和效率。 下面是一篇关于家政小程序开发的H5小程序的文章&#xff0c;希望对您有所帮助。 家政服…

Spring Cloud 远程接口调用OpenFeign负载均衡实现原理详解

环境&#xff1a;Spring Cloud 2021.0.7 Spring Boot 2.7.12 配置依赖 maven依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-openfeign</artifactId> </dependency> <dependency&…

未来Mac下载站怎么打不开了

重要公告&#xff1a; 未来软件园因业务需要现更换域名 原域名&#xff1a;Mac.orsoon.com 更为新域名&#xff1a;未来mac下载-Mac软件-mac软件下载-mac软件大全 程序已全面转移&#xff0c;请访问新域名

tauri自定义窗口window并实现拖拽和阴影效果

需求说明 由于官方提供的窗口标题并不能实现我的需求&#xff0c;不能很好的实现主题切换的功能&#xff0c;所以根据官方文档实现了一个自定义的窗口&#xff0c;官方文档地址&#xff1a;Window Customization | Tauri Apps 但是实现之后&#xff0c; 没有了窗体拖拽移动的…

第四章Shell编程之正则表达式与文本处理器

文本处理有三剑客&#xff1a;grep sed awk 通配符&#xff1a;只能匹配文件名与目录名&#xff0c;不能匹配文件的内容 *匹配任意一个或者多个字符 &#xff1f;匹配任意一个字符&#xff08;就是匹配单个字符&#xff09; [ ] 匹配范围内的任意单个字符 正则表达式&…

ONNX 推理,精度下降

先看代码&#xff1a; img cv2.imread("65.jpg") img1 img.copy() img2 img.copy() img1 - 112 img1 img1.astype(np.float32) img2 np.float32(img2) img2 - 112 现象&#xff1a;在使用 img1 这种处理方式时&#xff0c;推理结果异常&#xff0c;起码掉点…

AUTOSAR CP标准的RTE和BSW各模块的设计及开发工作

AUTOSAR&#xff08;Automotive Open System Architecture&#xff09;是一种开放的汽车电子系统架构标准&#xff0c;旨在提供一种统一的软件架构&#xff0c;以实现汽车电子系统的模块化和可重用性。 AUTOSAR标准中的两个重要模块是RTE&#xff08;Runtime Environment&…

智能优化算法——灰狼优化算法(PythonMatlab实现)

目录 1 灰狼优化算法基本思想 2 灰狼捕食猎物过程 2.1 社会等级分层 2.2 包围猎物 2.3 狩猎 2.4 攻击猎物 2.5 寻找猎物 3 实现步骤及程序框图 3.1 步骤 3.2 程序框图 4 Python代码实现 5 Matlab实现 1 灰狼优化算法基本思想 灰狼优化算法是一种群智能优化算法&#xff0c;它的…

【已解决】ModuleNotFoundError: No module named ‘timm.models.layers.helpers‘

文章目录 错误信息原因解决方法专栏&#xff1a;神经网络精讲与实战AlexNetVGGNetGoogLeNetInception V2——V4ResNetDenseNet 错误信息 在使用timm库的时候出现了ModuleNotFoundError: No module named timm.models.layers.helpers’的错误&#xff0c;详情如下&#xff1a; …

大语言模型举例和相关论文推荐

大语言模型如火如荼。甚至已经爆发了“百模大战” 2023年&#xff0c;“百模大战”&#xff0c;一触即发。 因为工作需要&#xff0c;我除了参加行业、企业、研究机构的发布会和闭门会&#xff0c;还需要基于自身的业务&#xff0c;不断了解最新的AI大模型和AIGC应用。 2024…

JavaScript——基础知识及使用

初识 JavaScript JavaScript (简称 JS) 是世界上最流行的编程语言之一.一个脚本语言, 通过解释器运行.主要在客户端(浏览器)上运行, 现在也可以基于 node.js 在服务器端运行. JavaScript 的能做的事情: 网页开发(更复杂的特效和用户交互)网页游戏开发服务器开发(node.js)桌…

Ceph的安装部署

文章目录 一、存储基础1.1 单机存储设备1.2 单机存储的问题1.3分布式存储&#xff08;软件定义的存储 SDS&#xff09; 二、Ceph 简介2.1 Ceph 优势2.2 Ceph 架构2.3 Ceph 核心组件2.4 Pool、PG 和 OSD 的关系&#xff1a;2.5 OSD 存储后端2.6 Ceph 数据的存储过程2.7 Ceph 版本…

手写Spring框架---MVC实现

目录 预备 自研框架MVC的实现 MVC架构草图&#xff1a; 大致流程 实现思路 自定义注解 JavaBean 请求的拦截-建立DispatcherServlet 责任链处理请求 RequestProcessor矩阵 Render矩阵 预备 在DispatcherServlet&#xff1a; 解析请求路径和请求方法依赖容器&#xf…

前端学习记录~2023.7.17~CSS杂记 Day9

前言一、浮动1、使盒子浮动起来2、清除浮动3、清除浮动元素周围的盒子&#xff08;1&#xff09;clearfix 小技巧&#xff08;2&#xff09;使用 overflow&#xff08;3&#xff09;display: flow-root 二、定位1、定位有哪些2、top、bottom、left 和 right3、定位上下文4、介绍…

ACME申请SSL证书

1.开放443端口 firewall-cmd --permanent --add-port443/tcp # 开放443端口 firewall-cmd --reload # 重启防火墙(修改配置后要重启防火墙)2.安装ACME # 安装acme curl https://get.acme.sh | sh -s email你的邮箱地址 # 别名 alias acme.sh~/.acme.sh/acme.sh3.使用ACME申请…

【面试笔试避坑指南】一

从这篇文章开始 进行笔试的训练环节&#xff0c;我会在 本专栏详细介绍笔试的易错点&#xff0c;帮助大家精准避坑。 1.有如下一段代码&#xff08;unit16_t为2字节无符号整数&#xff0c;unit8_t位1字节无符号整数&#xff09;&#xff1b; 请问x.z.n在大字节序和小字节序机器…