【初始消息队列】消息队列的各种类型

消息队列相关概念

什么是消息队列

MQ(message queue),从字面意思上看,本质是个队列,FIFO 先入先出,只不过队列中存放的内容是 message 而已,还是一种跨进程的通信机制,用于上下游传递消息。在互联网架构中,MQ 是一种非常常 见的上下游“逻辑解耦+物理解耦”的消息通信服务。使用了 MQ 之后,消息发送上游只需要依赖 MQ,不 用依赖其他服务

为什么使用消息队列

消息队列主要是有以下几种优点:消息消峰、应用解耦和异步处理。如下:

  1. 流量消峰:如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正 常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限 制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分 散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好
  2. 应用解耦:以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合 调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于 消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在 这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流 系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性
  3. 异步处理:有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可 以执行完,以前一般有两种方式,A 过一段时间去调用 B 的查询 api 查询。或者 A 提供一个 callback api, B 执行完之后调用 api 通知 A 服务。这两种方式都不是很优雅,使用消息总线,可以很方便解决这个问题, A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此 消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样 B 服务也不 用做这些操作。A 服务还能及时的得到异步处理成功的消息

消息队列的种类

  1. ActiveMQ
    1. 优点:单机吞吐量万级,时效性 ms 级,可用性高,基于主从架构实现高可用性,消息可靠性较 低的概率丢失数据
    2. 缺点:官方社区现在对 ActiveMQ 5.x 维护越来越少,高吞吐量场景较少使用
  2. Kafka:大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开 Kafka,这款为大数据而生的消息中间件, 以其百万级 TPS 的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥 着举足轻重的作用
    1. 优点:性能卓越,单机写入 TPS 约在百万条/秒,最大的优点,就是吞吐量高。时效性 ms 级可用性非常高,kafka 是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
    2. 缺点:Kafka 单机超过64个队列/分区,Load 会发生明显的飙高现象,队列越多,load 越高,发送消 息响应时间变长,使用短轮询方式,实时性取决于轮询间隔时间,消费失败不支持重试;支持消息顺序, 但是一台代理宕机后,就会产生消息乱序,社区更新较慢
  3. RocketMQ:RocketMQ 出自阿里巴巴的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一 些改进。被阿里巴巴广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog 分发等场景
    1. 优点:单机吞吐量十万级,可用性非常高,分布式架构,消息可以做到 0 丢失,MQ 功能较为完善,还是分 布式的,扩展性好,支持 10 亿级别的消息堆积,不会因为堆积导致性能下降,源码是 java 我们可以自己阅 读源码,定制自己公司的 MQ
    2. 缺点:支持的客户端语言不多,目前是 java 及 c++,其中 c++不成熟;社区活跃度一般,没有在 MQ 核心中去实现 JMS 等接口,有些系统要迁移需要修改大量代码
  4. RabbitMQ:2007 年发布,是一个在 AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最 主流的消息中间件之一
    1. 优点:由于 erlang 语言的高并发特性,性能较好;吞吐量到万级,MQ 功能比较完备,健壮、稳定、易 用、跨平台、支持多种语言,支持 AJAX 文档齐全;开源提供的管理界面非常棒,用起来很好用,社区活跃度高;更新频率相当高
    2. 缺点:商业版需要收费,学习成本较高

消息队列的选择

  1. Kafka:主要特点是基于 Pull 的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集 和传输,适合产生大量数据的互联网服务的数据收集业务。大型公司建议可以选用,如果有日志采集功能, 肯定是首选 kafka 了
  2. RocketMQ:天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削 峰,在大量交易涌入时,后端可能无法及时处理的情况。RoketMQ 在稳定性上可能更值得信赖,这些业务 场景在阿里双 11 已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择 RocketMQ
  3. RabbitMQ:结合 erlang 语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分 方便,如果你的数据量没有那么大,中小型公司优先选择功能比较完备的 RabbitMQ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/392466.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--强化学习、机器人等

专属领域论文订阅 VX关注{晓理紫},每日更新论文,如感兴趣,请转发给有需要的同学,谢谢支持 如果你感觉对你有所帮助,请关注我,每日准时为你推送最新论文。 为了答谢各位网友的支持,从今日起免费为…

SQL-Labs靶场“11-15”关通关教程

君衍. 一、十一关 基于POST单引号字符型注入1、源码分析2、联合查询注入3、报错注入 二、十二关 基于POST双引号字符型注入1、源码分析2、联合查询注入3、报错注入 三、十三关 基于POST单引号报错注入变形1、源码分析2、报错注入 四、十四关 基于POST双引号报错注入1、源码分析…

PWM驱动直流电机

一、知识补充; 低频时有蜂鸣器响声,加大PWM频率,超出人耳范围就可以听不到,20Hz~20kHz 加大频率-->减小预分频器,从720-->36现在频率就是20kHz这样不会影响占空比? 二、接线图 三、代码分析 main,c #include…

批量采集网站产品图并生成对应EXCEL

运营的小哥需要批量采集某网站的产品大图产品标题,粗略看了看是shopfy的网站,数据大概1000多点,需求嘛就是需要生成带图的cxcel文档,想想去折腾个程序太浪费时间了,何况不会python就另辟蹊径了。 用到了后羿采集器&am…

rust函数 stuct struct方法 关联函数

本文结合2个代码实例主要介绍了rust函数定义方法,struct结构体定义、struct方法及关联函数等相关基础知识。 代码1: main.rc #[derive(Debug)]//定义一个结构体 struct Ellipse {max_semi_axis: u32,min_semi_axis: u32, }fn main() {//椭圆&#xff0…

大数据01-导论

零、文章目录 大数据01-导论 1、数据与数据分析 **数据:是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的原始素材。**数据可以是连续的值,比如声音、图像,称为模拟数据;也可…

电阻器的脉冲浪涌能力?

由于现有需求,许多现代电子电路和设备都会经历瞬态脉冲和浪涌。这反过来又导致需要“设计”瞬态浪涌保护,尤其是在电机控制器等电路中。当电机启动时,此时消耗的电流过大,可能导致电阻器故障。同样,如果电容器用于电机…

2023-CVPR-Adjustment and Alignment for Unbiased Open Set Domain Adaptation

Adjustment and Alignment (ANNA) Front-Door Adjustment:类似二分类交叉熵,令概率接近1,以降低损失 Decoupled Causal Alignment:类似多分类交叉熵,令概率接近标签M

差异分析和PPI网路图绘制教程

写在前面 在原文中,作者获得285个DEG,在此推文中共获得601个DEG。小杜的猜想是标准化的水段不同的原因吧,或是其他的原因。此外,惊奇的发现发表医学类的文章在附件中都不提供相关的信息文件,如DEG数据、GO、KEGG富集信…

【教3妹学编程-算法题】N 叉树的前序遍历

2哥 : 叮铃铃,3妹,准备复工了啊,过年干嘛呢,是不是逛吃逛吃,有没有长胖呢。 3妹:切,不想上班,假期能不能重来一遍啊,虽然在家我妈张罗着要给我相亲呢。可是在家还是很好的…

Linux CentOS stream 9 安装docker

在计算机技术中,虑拟化是一种资源管理技术,是将计算机的各种实体资源(CPU、内存、磁盘空间、网络适配器等),予以抽象、转换后呈现出来并可供分区、组合为一个或多个电脑配置环境。 目前,大多数服务器的容量的利用率不足15%,这导致服务器数量激增以及增加了复杂性。服务…

SG5032EEN晶体振荡器SPXO

5G将使通信流量呈指数级增长,5G通信网络需要高速和宽带,同时将噪声水平保持在最低水平,这可以通过通信设备的高频低抖动参考时钟来实现,使用上述晶体振荡器SPXO,客户可以输入一个具有极低相位抖动和功率的高频参考时钟…

《Go 简易速速上手小册》第3章:数据结构(2024 最新版)

文章目录 3.1 数组与切片:Go 语言的动态队伍3.1.1 基础知识讲解3.1.2 重点案例:动态成绩单功能描述实现代码扩展功能 3.1.3 拓展案例 1:数据分析功能描述实现代码扩展功能 3.1.4 拓展案例 2:日志过滤器功能描述实现代码扩展功能 3…

鸿蒙开发者预览版如何?

在24年的华为鸿蒙发布会中表示。预览版已经向开发者开放申请,首批支持的机型有三款分别为华为 Mate 60、华为Mate 60 Pro、华为Mate X5。 其HarmonyOS NEXT去除Linux内核以及AOSP代码,采用的鸿蒙内核以及代码,HarmonyOS NEXT系统仅支持鸿蒙内…

MySQL数据库基础(四):图形化开发工具DataGrip

文章目录 图形化开发工具DataGrip 一、DataGrip介绍 二、DataGrip安装 三、创建工程 四、连接数据库 五、选择要使用的数据库 六、DataGrip软件设置 1、设置字体大小 2、设置关键字大写 3、自动排版 图形化开发工具DataGrip 一、DataGrip介绍 DataGrip是JetBrains公…

用于图像处理的Python顶级库 !!

文章目录 前言 1、OpenCV 2、Scikit-Image 3、Scipy 4、Python Image Library(Pillow / PIL) 5、Matplotlib 6、SimpleITK 7、Numpy 8、Mahotas 前言 正如IDC所指出的,数字信息将飙升至175ZB,而这些信息中的巨大一部分是图片。数…

综合交易模型教程---qmt实盘链接,提供源代码

综合交易模型教程---qmt实盘链接,提供源代码 Original L1511732 数据分析与运用 2024-02-17 00:13 贵州 目前框架实盘全部完成了,后面写教程,每一个函数怎么样使用,怎么样开发自己的策略 模拟盘现在登录不了我直接实盘展示 后面…

FLUENT Meshing Watertight Geometry工作流入门 - 8 添加边界层网格

本视频中学到的内容: 如何使用 “添加边界层”任务生成边界层网格边界层网格在流体动力学中的重要性可用于添加边界层网格的方法以及所需的用户输入 视频链接: FLUENT Meshing入门教程-8添加边界层网格_哔哩哔哩_bilibili 流体动力学中边界层的概念及…

备战蓝桥杯---图论之最小生成树

首先,什么是最小生成树? 他就是无向图G中的所有生成树中树枝权值总和最小的。 如何求? 我们不妨采用以下的贪心策略: Prim算法(复杂度:(nm)logm): 我们对于把上述的点看成两个集…

SNMPv1/v2c-原理浅谈+报文示例+简易配置

个人认为,理解报文就理解了协议。通过报文中的字段可以理解协议在交互过程中相关传递的信息,更加便于理解协议。 因此本文将在SNMP协议报文的基础上进行介绍。 SNMPv1版本相关RFC SNMPv2版本相关RFC 关于 Community-based SNMPv2 的基本原理&#xff…