变分自编码器(VAE)PyTorch Lightning 实现

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • VAE 简介
      • 基本原理
      • 应用与优点
      • 缺点与挑战
    • 使用 VAE 生成 MNIST 手写数字
      • 忽略警告
      • 导入必要的库
      • 设置随机种子
      • cuDNN 设置
      • 超参数设置
      • 数据加载
      • 定义 VAE 模型
      • 定义损失函数
      • 定义 Lightning 模型
      • 训练模型
      • 绘制训练过程
      • 随机生成新样本
      • 根据潜变量插值生成新样本


VAE 简介

变分自编码器(Variational Autoencoder,VAE)是一种深度学习中的生成模型,它结合了自编码器(Autoencoder, AE)和概率建模的思想,在无监督学习环境中表现出了强大的能力。VAE 在 2013 年由 Diederik P. Kingma 和 Max Welling 首次提出,并迅速成为生成模型领域的重要组成部分。

基本原理

自编码器(AE)基础:
自编码器是一种神经网络结构,通常由两部分组成:编码器(Encoder)和解码器(Decoder)。原始数据通过编码器映射到一个低维的潜在空间(或称为隐空间),这个低维向量被称为潜变量(latent variable)。然后,潜变量再通过解码器重构回原始数据的近似版本。在训练过程中,自编码器的目标是使得输入数据经过编码-解码过程后能够尽可能地恢复原貌,从而学习到数据的有效表示。

VAE的引入与扩展:
VAE 将自编码器的概念推广到了概率框架下。在 VAE 中,潜变量不再是确定性的,而是被赋予了概率分布。具体来说,对于给定的输入数据,编码器不直接输出一个点估计值,而是输出潜变量的均值和方差(假设潜变量服从高斯分布)。这样,每个输入数据可以被视为是从某个潜在的概率分布中采样得到的。

变分推断(Variational Inference):
训练 VA E时,由于真实的后验概率分布难以直接计算,因此采用变分推断来近似后验分布。编码器实际上输出的是一个参数化的概率分布 q ( z ∣ x ) q(z|x) q(zx),即给定输入 x x x 时潜变量 z z z 的概率分布。然后通过最小化 KL 散度(Kullback-Leibler divergence)来优化这个近似分布,使其尽可能接近真实的后验分布 p ( z ∣ x ) p(z|x) p(zx)

目标函数 - Evidence Lower Bound (ELBO):
VAE 的目标函数是证据下界(ELBO),它是原始数据 log-likelihood 的下界。优化该目标函数既鼓励编码器找到数据的高效潜在表示,又促使解码器基于这些表示重建出类似原始数据的新样本。

数学表达上,ELBO 通常分解为两个部分:

  1. 重构损失(Reconstruction Loss):衡量从潜变量重构出来的数据与原始数据之间的差异。
  2. KL散度损失(KL Divergence Loss):衡量编码器产生的潜变量分布与预设的标准正态分布(或其他先验分布)之间的距离。

应用与优点

  • VAE 可以用于生成新数据,例如图像、文本、音频等。
  • 由于其对潜变量进行概率建模,所以它可以提供连续的数据生成,并且能够探索数据的不同模式。
  • 在处理连续和离散数据时具有一定的灵活性。
  • 可以用于特征学习,提取数据的有效低维表示。

缺点与挑战

  • 训练 VAE 可能需要大量的计算资源和时间。
  • 生成的样本有时可能不够清晰或细节模糊,尤其是在复杂数据集上。
  • 对于某些复杂的分布形式,VAE 可能无法完美捕获所有细节。

使用 VAE 生成 MNIST 手写数字

下面我们将使用 PyTorch Lightning 来实现一个简单的 VAE 模型,并使用 MNIST 数据集来进行训练和生成。

在线 Notebook:https://www.kaggle.com/code/marquis03/vae-mnist

忽略警告

import warnings
warnings.filterwarnings("ignore")

导入必要的库

import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_theme(style="darkgrid", font_scale=1.5, font="SimHei", rc={"axes.unicode_minus":False})

import torch
import torchmetrics
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms, datasets

import lightning.pytorch as pl
from lightning.pytorch.loggers import CSVLogger
from lightning.pytorch.callbacks.early_stopping import EarlyStopping

设置随机种子

seed = 1
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

cuDNN 设置

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True

超参数设置

batch_size = 64

epochs = 10
KLD_weight = 1
lr = 0.001

input_dim = 784  # 28 * 28
h_dim = 256  # 隐藏层维度  
z_dim = 2  # 潜变量维度

数据加载

train_dataset = datasets.MNIST(root="data", train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

定义 VAE 模型

class VAE(nn.Module):
    def __init__(self, input_dim=784, h_dim=400, z_dim=20):
        super(VAE, self).__init__()

        self.input_dim = input_dim
        self.h_dim = h_dim
        self.z_dim = z_dim

        # Encoder
        self.fc1 = nn.Linear(input_dim, h_dim)
        self.fc21 = nn.Linear(h_dim, z_dim)  # mu
        self.fc22 = nn.Linear(h_dim, z_dim)  # log_var

        # Decoder
        self.fc3 = nn.Linear(z_dim, h_dim)
        self.fc4 = nn.Linear(h_dim, input_dim)

    def encode(self, x):
        h = torch.relu(self.fc1(x))
        mean = self.fc21(h)
        log_var = self.fc22(h)
        return mean, log_var

    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return mu + eps * std

    def decode(self, z):
        h = torch.relu(self.fc3(z))
        out = torch.sigmoid(self.fc4(h))
        return out

    def forward(self, x):
        mean, log_var = self.encode(x)
        z = self.reparameterize(mean, log_var)
        reconstructed_x = self.decode(z)
        return reconstructed_x, mean, log_var

vae = VAE(input_dim, h_dim, z_dim)
x = torch.randn((10, input_dim))
reconstructed_x, mean, log_var = vae(x)
print(reconstructed_x.shape, mean.shape, log_var.shape)
# torch.Size([10, 784]) torch.Size([10, 2]) torch.Size([10, 2])

定义损失函数

def loss_function(x_hat, x, mu, log_var, KLD_weight=1):
    BCE_loss = F.binary_cross_entropy(x_hat, x, reduction="sum") # 重构损失
    KLD_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) # KL 散度损失
    loss = BCE_loss + KLD_loss * KLD_weight
    return loss, BCE_loss, KLD_loss

定义 Lightning 模型

class LitModel(pl.LightningModule):
    def __init__(self, input_dim=784, h_dim=400, z_dim=20):
        super().__init__()
        self.model = VAE(input_dim, h_dim, z_dim)

    def forward(self, x):
        x = self.model(x)
        return x

    def configure_optimizers(self):
        optimizer = optim.Adam(
            self.parameters(), lr=lr, betas=(0.9, 0.99), eps=1e-08, weight_decay=1e-5
        )
        return optimizer

    def training_step(self, batch, batch_idx):
        x, y = batch
        x = x.view(x.size(0), -1)
        reconstructed_x, mean, log_var = self(x)
        loss, BCE_loss, KLD_loss = loss_function(reconstructed_x, x, mean, log_var, KLD_weight=KLD_weight)
        self.log("loss", loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
        self.log_dict(
            {
                "BCE_loss": BCE_loss,
                "KLD_loss": KLD_loss,
            },
            on_step=False,
            on_epoch=True,
            logger=True,
        )
        return loss
    
    def decode(self, z):
        out = self.model.decode(z)
        return out

训练模型

model = LitModel(input_dim, h_dim, z_dim)
logger = CSVLogger("./")
early_stop_callback = EarlyStopping(monitor="loss", min_delta=0.00, patience=5, verbose=False, mode="min")
trainer = pl.Trainer(
    max_epochs=epochs,
    enable_progress_bar=True,
    logger=logger,
    callbacks=[early_stop_callback],
)
trainer.fit(model, train_loader)

绘制训练过程

log_path = logger.log_dir + "/metrics.csv"
metrics = pd.read_csv(log_path)
x_name = "epoch"

plt.figure(figsize=(8, 6), dpi=100)
sns.lineplot(x=x_name, y="loss", data=metrics, label="Loss", linewidth=2, marker="o", markersize=10)
sns.lineplot(x=x_name, y="BCE_loss", data=metrics, label="BCE Loss", linewidth=2, marker="^", markersize=12)
sns.lineplot(x=x_name, y="KLD_loss", data=metrics, label="KLD Loss", linewidth=2, marker="s", markersize=10)
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.tight_layout()
plt.show()

训练过程

随机生成新样本

row, col = 4, 18
z = torch.randn(row * col, z_dim)
random_res = model.model.decode(z).view(-1, 1, 28, 28).detach().numpy()

plt.figure(figsize=(col, row))
for i in range(row * col):
    plt.subplot(row, col, i + 1)
    plt.imshow(random_res[i].squeeze(), cmap="gray")
    plt.xticks([])
    plt.yticks([])
    plt.axis("off")
plt.show()

随机生成新样本

根据潜变量插值生成新样本

from scipy.stats import norm

n = 15
digit_size = 28

grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))

figure = np.zeros((digit_size * n, digit_size * n))
for i, yi in enumerate(grid_y):
    for j, xi in enumerate(grid_x):
        t = [xi, yi]
        z_sampled = torch.FloatTensor(t)
        with torch.no_grad():
            decode = model.decode(z_sampled)
            digit = decode.view((digit_size, digit_size))
            figure[
                i * digit_size : (i + 1) * digit_size,
                j * digit_size : (j + 1) * digit_size,
            ] = digit

plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap="gray")
plt.xticks([])
plt.yticks([])
plt.axis("off")
plt.show()

根据潜变量插值生成新样本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/389527.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

165基于matlab的各类滤波器

基于matlab的各类滤波器。汉宁窗设计Ⅰ型数字高通滤波器、切比雪夫一致逼近法设计FIR数字低通滤波器、模拟Butterworth滤波器设计数字低通滤波器、频域抽样法的FIR数字带阻滤波器设计、频域抽样法的FIR数字带通滤波器设计、汉宁窗的FIR数字高通滤波器设计、双线性法设计巴特沃斯…

关于java的网图下载

关于java的网图下载 我们在上篇文章中,学习到了用Thread类去创建多线程,我们本篇文章来向大家介绍一下网图下载功能,利用多线程同时下载多个图片😉 一、下载器 我们下载网络图片的时候,首先需要自己定义一个下载器&…

可变参数(c/c++)

目录 一、C语言版本 二、C的实现方法 2.1数据包 2.2sizeof...运算符 2.3可变参数模板的使用 2.4emplace_back() 有时候我们在编写函数时,可能不知道要传入的参数个数,类型 。比如我们要实现一个叠加函数,再比如c语言中的printf,c中的emp…

WebGPT与WebGLM

WebGPT paper: WebGPT:Browser-assisted question-answering with human feedbackDemo: https://openaipublic.blob.core.windows.net/webgpt-answer-viewer/index.html webgpt的论文发表最早,但论文本身写的比较"高山仰止",可能先…

汇报工作时,你的工作会让领导满意吗?

当前你正在做的事 众所周知,跟领导汇报,第一件事需着重汇报你正在做的事,否则领导会感觉你无所事事。 举个例子: 完成了某某项目,在这项目中我负责:协调不同科室之间的纠纷,并把问题集中上报给…

《春山》中的贝叶斯统计——白敬亭衣服合理概率及决策比重。

目录 1. 全身黑衣服合理概率2. 真的是导演组允许?3. 粉丝的证据是否站得住?4.总结 感谢up主链接: 【理工春山学】只谈事实 从统计角度深度剖析春山学,她使用贝叶斯统计合理分析了在舞台中白敬亭、双魏、导演组出错的概率。接下来我采用一个新…

Acwing---846. 树的重心

树的重心 1.题目2.基本思想3.代码实现 1.题目 给定一颗树,树中包含 n n n 个结点(编号 1 ∼ n 1∼n 1∼n)和 n − 1 n−1 n−1 条无向边。 请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。 …

百度云AI

百度云AI概述 Face腾讯优图科大讯飞 百度人脸识别基于深度学习的人脸识别方案,准确识别图片中的人脸信息,提供如下功能: 人脸检测:精准定位图中人脸,获得眼、口、鼻等72个关键点位置,分析性别、年龄、表…

【JAVA-Day89】Java字符串和XML数据结构的转换

Java字符串和XML数据结构的转换 Java字符串和XML数据结构的转换,高效灵活转变数据摘要引言一、什么是XML二、XML格式的应用场景三、XML字符串转对象3.1 使用 DOM 解析器实现 XML 字符串转对象3.2 使用 JAXB 实现 XML 字符串转对象 四、XML对象转字符串4.1 使用 DOM …

【实战】一、Jest 前端自动化测试框架基础入门(一) —— 前端要学的测试课 从Jest入门到TDD BDD双实战(一)

文章目录 一、前端要学的测试课1.前端要学的测试2.前端工程化的一部分3.前端自动化测试的例子4.前端为什么需要自动化测试?5.课程涵盖内容6.前置技能7.学习收获 二、Jest 前端自动化测试框架基础入门1. 自动化测试背景及原理前端自动化测试产生的背景及原理 2.前端自…

Linux中sigaction函数和SIGCHLD信号的使用

sigaction函数: 函数说明:注册一个信号处理函数 函数原型:int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact); 函数参数: signum:捕捉的信号act:传入参数,…

IDEA工程与模块管理

一、IDEA项目结构 层级关系: project(工程) - module(模块) - package(包) - class(类)具体的: 一个project中可以创建多个module一个module中可以创建多个package一个package中可以创建多个class二、Project和Module的概念 在 IntelliJ IDEA 中&…

HTTP特性

大家好我是苏麟 , 今天说说HTTP特性. 资料来源 : 小林coding 小林官方网站 : 小林coding (xiaolincoding.com) 到目前为止,HTTP 常见到版本有 HTTP/1.1,HTTP/2.0,HTTP/3.0,不同版本的 HTTP 特性是不一样的。 这里先用 HTTP/1.1 版本给大家介…

第6讲自定义icon实现

自定义icon实现 component下新建SvgIcon目录&#xff0c;再新建index.vue 定义svg-icon组件 <template><svg class"svg-icon" aria-hidden"true"><use :xlink:href"iconName"></use></svg> </template>&…

Kafka King 推荐一款漂亮、现代、实用的kafka客户端

Kafka King 一个漂亮、现代、实用的kafka客户端&#xff0c;使用python flet、flutter构建。 Github主页&#xff1a;https://github.com/Bronya0/Kafka-King 下载&#xff1a;https://github.com/Bronya0/Kafka-King/releases 功能清单 查看集群节点列表创建主题&#xf…

Spring Resource

java.net.URL 类可用于访问带有各种URL前缀的资源&#xff0c;但是对于访问一些资源还是不够方便。比如不能从类路径或者相对于ServletContext来获取资源。而Spring 的Resource接口&#xff0c;则可以通过类路径等方式来访问资源。 1 Resource接口 图 Resource接口及方法 getI…

Java 和 JavaScript 的奇妙协同:语法结构的对比与探索(上)

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

数学建模:BP神经网络(含python实现)

原理 BP 神经网络&#xff0c;也称为多层感知机&#xff08;Multilayer Perceptron&#xff0c;MLP&#xff09;&#xff0c;是一种常见的神经网络模型&#xff0c;用于解决各种机器学习问题&#xff0c;包括分类和回归。BP 代表“反向传播”&#xff08;Backpropagation&#…

使用redis-insight连接到服务器上的redis数据库

一、安装redis&#xff1a; 安装 Redis。你可以通过运行下面的命令来使用 yum 安装 Redis&#xff1a; sudo yum install redis 启动 Redis 服务。安装完成后&#xff0c;你可以通过运行下面的命令来启动 Redis 服务&#xff1a; sudo systemctl start redis 设置 Redis 服务…

【C++】static静态关键字

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …