LeetCode 每日一题 Day 62 - 75

1686. 石子游戏 VI

Alice 和 Bob 轮流玩一个游戏,Alice 先手。

一堆石子里总共有 n 个石子,轮到某个玩家时,他可以 移出 一个石子并得到这个石子的价值。Alice 和 Bob 对石子价值有 不一样的的评判标准 。双方都知道对方的评判标准。

给你两个长度为 n 的整数数组 aliceValues 和 bobValues 。aliceValues[i] 和 bobValues[i] 分别表示 Alice 和 Bob 认为第 i 个石子的价值。

所有石子都被取完后,得分较高的人为胜者。如果两个玩家得分相同,那么为平局。两位玩家都会采用 最优策略 进行游戏。

请你推断游戏的结果,用如下的方式表示:

如果 Alice 赢,返回 1 。
如果 Bob 赢,返回 -1 。
如果游戏平局,返回 0 。

示例 1:

输入:aliceValues = [1,3], bobValues = [2,1]
输出:1
解释:
如果 Alice 拿石子 1 (下标从 0开始),那么 Alice 可以得到 3 分。
Bob 只能选择石子 0 ,得到 2 分。
Alice 获胜。
示例 2:

输入:aliceValues = [1,2], bobValues = [3,1]
输出:0
解释:
Alice 拿石子 0 , Bob 拿石子 1 ,他们得分都为 1 分。
打平。
示例 3:

输入:aliceValues = [2,4,3], bobValues = [1,6,7]
输出:-1
解释:
不管 Alice 怎么操作,Bob 都可以得到比 Alice 更高的得分。
比方说,Alice 拿石子 1 ,Bob 拿石子 2 , Alice 拿石子 0 ,Alice 会得到 6 分而 Bob 得分为 7 分。
Bob 会获胜。

提示:

n == aliceValues.length == bobValues.length
1 <= n <= 1e5
1 <= aliceValues[i], bobValues[i] <= 100

贪心做法:

class Solution {
public:
    int stoneGameVI(vector<int>& aliceValues, vector<int>& bobValues) {
        int n = aliceValues.size();
        vector<pair<int, int>> diff(n);

        for (int i = 0; i < n; ++i) {
            diff[i] = {aliceValues[i] + bobValues[i], i};
        }

        sort(diff.begin(), diff.end(), greater<pair<int, int>>());

        int aliceScore = 0, bobScore = 0;

        for (int i = 0; i < n; ++i) {
            int idx = diff[i].second;
            if (i % 2 == 0) {
                aliceScore += aliceValues[idx];
            } else {
                bobScore += bobValues[idx];
            }
        }

        if (aliceScore > bobScore) {
            return 1;
        } else if (aliceScore < bobScore) {
            return -1;
        } else {
            return 0;
        }
    }
};

1690. 石子游戏 VII

石子游戏中,爱丽丝和鲍勃轮流进行自己的回合,爱丽丝先开始 。

有 n 块石子排成一排。每个玩家的回合中,可以从行中 移除 最左边的石头或最右边的石头,并获得与该行中剩余石头值之 和 相等的得分。当没有石头可移除时,得分较高者获胜。

鲍勃发现他总是输掉游戏(可怜的鲍勃,他总是输),所以他决定尽力 减小得分的差值 。爱丽丝的目标是最大限度地 扩大得分的差值 。

给你一个整数数组 stones ,其中 stones[i] 表示 从左边开始 的第 i 个石头的值,如果爱丽丝和鲍勃都 发挥出最佳水平 ,请返回他们 得分的差值 。

示例 1:

输入:stones = [5,3,1,4,2]
输出:6
解释:

  • 爱丽丝移除 2 ,得分 5 + 3 + 1 + 4 = 13 。游戏情况:爱丽丝 = 13 ,鲍勃 = 0 ,石子 = [5,3,1,4] 。
  • 鲍勃移除 5 ,得分 3 + 1 + 4 = 8 。游戏情况:爱丽丝 = 13 ,鲍勃 = 8 ,石子 = [3,1,4] 。
  • 爱丽丝移除 3 ,得分 1 + 4 = 5 。游戏情况:爱丽丝 = 18 ,鲍勃 = 8 ,石子 = [1,4] 。
  • 鲍勃移除 1 ,得分 4 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [4] 。
  • 爱丽丝移除 4 ,得分 0 。游戏情况:爱丽丝 = 18 ,鲍勃 = 12 ,石子 = [] 。
    得分的差值 18 - 12 = 6 。
    示例 2:

输入:stones = [7,90,5,1,100,10,10,2]
输出:122

提示:

n == stones.length
2 <= n <= 1000
1 <= stones[i] <= 1000

博弈DP 没有思路参考了题解:

class Solution {
    int p[1010], q[1010];
    int f[1010][1010];

public:
    int stoneGameVII(vector<int>& a) {
        int n = a.size();
        for (int i = 1; i <= n; i++)
            p[i] = a[i - 1], q[i] = q[i - 1] + p[i];
        for (int i = 1; i <= n; i++)
            f[i][i] = p[i];
        for (int i = n; i >= 1; i--) {
            for (int j = i + 1; j <= n; j++) {
                int x = q[j] - q[i];
                int y = q[j - 1] - q[i - 1];
                f[i][j] = min(p[i] + x - f[i + 1][j], p[j] + y - f[i][j - 1]);
            }
        }
        return q[n] - f[1][n];
    }
};

292. Nim 游戏

你和你的朋友,两个人一起玩 Nim 游戏:

桌子上有一堆石头。

  • 你们轮流进行自己的回合, 你作为先手 。
  • 每一回合,轮到的人拿掉 1 - 3 块石头。
  • 拿掉最后一块石头的人就是获胜者。
  • 假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false 。

示例 1:

输入:n = 4
输出:false
解释:以下是可能的结果:

  1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
  2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。
    3.你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。
    在所有结果中,你的朋友是赢家。

示例 2:

输入:n = 1
输出:true

示例 3:

输入:n = 2
输出:true

实际上是一个数学题(博弈论?):

class Solution {
public:
    bool canWinNim(int n) {
        return n % 4 != 0;
    }
};

1696. 跳跃游戏 VI

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。

一开始你在下标 0 处。每一步,你最多可以往前跳 k 步,但你不能跳出数组的边界。也就是说,你可以从下标 i 跳到 [i + 1, min(n - 1, i + k)] 包含 两个端点的任意位置。

你的目标是到达数组最后一个位置(下标为 n - 1 ),你的 得分 为经过的所有数字之和。

请你返回你能得到的 最大得分 。

示例 1:

输入:nums = [1,-1,-2,4,-7,3], k = 2
输出:7
解释:你可以选择子序列 [1,-1,4,3] (上面加粗的数字),和为 7 。
示例 2:

输入:nums = [10,-5,-2,4,0,3], k = 3
输出:17
解释:你可以选择子序列 [10,4,3] (上面加粗数字),和为 17 。
示例 3:

输入:nums = [1,-5,-20,4,-1,3,-6,-3], k = 2
输出:0

提示:

1 <= nums.length, k <= 1e5
-104 <= nums[i] <= 1e4

单调队列+DP :

class Solution {
public:
    int maxResult(vector<int> &nums, int k) {
        deque<int> q = {0};
        for (int i = 1; i < nums.size(); i++) {
            // 1. 出
            if (q.front() < i - k) {
                q.pop_front();
            }
            // 2. 转移
            nums[i] += nums[q.front()];
            // 3. 入
            while (!q.empty() && nums[i] >= nums[q.back()]) {
                q.pop_back();
            }
            q.push_back(i);
        }
        return nums.back();
    }
};

LCP 30. 魔塔游戏

小扣当前位于魔塔游戏第一层,共有 N 个房间,编号为 0 ~ N-1。每个房间的补血道具/怪物对于血量影响记于数组 nums,其中正数表示道具补血数值,即血量增加对应数值;负数表示怪物造成伤害值,即血量减少对应数值;0 表示房间对血量无影响。

小扣初始血量为 1,且无上限。假定小扣原计划按房间编号升序访问所有房间补血/打怪,为保证血量始终为正值,小扣需对房间访问顺序进行调整,每次仅能将一个怪物房间(负数的房间)调整至访问顺序末尾。请返回小扣最少需要调整几次,才能顺利访问所有房间。若调整顺序也无法访问完全部房间,请返回 -1。

示例 1:

输入:nums = [100,100,100,-250,-60,-140,-50,-50,100,150]

输出:1

解释:初始血量为 1。至少需要将 nums[3] 调整至访问顺序末尾以满足要求。

示例 2:

输入:nums = [-200,-300,400,0]

输出:-1

解释:调整访问顺序也无法完成全部房间的访问。

提示:

1 <= nums.length <= 10^5
-10^5 <= nums[i] <= 10^5

参考了题解,贪心+优先队列:

class Solution {
public:
    int magicTower(vector<int>& nums) {
        int numsSize = nums.size();

        long long sum = 0;
        for (int i = 0; i < numsSize; i++) {
            sum += nums[i];
        }

        if (sum < 0)
            return -1;
        int cnt = 0;
        long long hp = 1;
        priority_queue<int, vector<int>, greater<int>> que;
        for (int i = 0; i < numsSize; i++) {
            que.emplace(nums[i]);

            while (hp + nums[i] <= 0) {
                cnt++;
                hp -= que.top();
                que.pop();
            }

            hp += nums[i];
        }
        return cnt;
    }
};

2641. 二叉树的堂兄弟节点 II

给你一棵二叉树的根 root ,请你将每个节点的值替换成该节点的所有 堂兄弟节点值的和 。

如果两个节点在树中有相同的深度且它们的父节点不同,那么它们互为 堂兄弟 。

请你返回修改值之后,树的根 root 。

注意,一个节点的深度指的是从树根节点到这个节点经过的边数。

示例 1:

在这里插入图片描述

输入:root = [5,4,9,1,10,null,7]
输出:[0,0,0,7,7,null,11]
解释:上图展示了初始的二叉树和修改每个节点的值之后的二叉树。

  • 值为 5 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 4 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 9 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 1 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
  • 值为 10 的节点有一个堂兄弟,值为 7 ,所以值修改为 7 。
  • 值为 7 的节点有两个堂兄弟,值分别为 1 和 10 ,所以值修改为 11 。

示例 2:
在这里插入图片描述

输入:root = [3,1,2]
输出:[0,0,0]
解释:上图展示了初始的二叉树和修改每个节点的值之后的二叉树。

  • 值为 3 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 1 的节点没有堂兄弟,所以值修改为 0 。
  • 值为 2 的节点没有堂兄弟,所以值修改为 0 。

提示:

树中节点数目的范围是 [1, 1e5] 。
1 <= Node.val <= 1e4

菜鸡不会这题,读者可以看看灵神题解:

class Solution {
public:
    TreeNode *replaceValueInTree(TreeNode *root) {
        root->val = 0;
        vector<TreeNode*> q = {root};
        while (!q.empty()) {
            vector<TreeNode*> nxt;
            // 计算下一层的节点值之和
            int next_level_sum = 0;
            for (auto node : q) {
                if (node->left) {
                    nxt.push_back(node->left);
                    next_level_sum += node->left->val;
                }
                if (node->right) {
                    nxt.push_back(node->right);
                    next_level_sum += node->right->val;
                }
            }

            // 再次遍历,更新下一层的节点值
            for (auto node : q) {
                int children_sum = (node->left ? node->left->val : 0) +
                                   (node->right ? node->right->val : 0);
                if (node->left) node->left->val = next_level_sum - children_sum;
                if (node->right) node->right->val = next_level_sum - children_sum;
            }
            q = move(nxt);
        }
        return root;
    }
};

题解:BFS+算两次

993. 二叉树的堂兄弟节点

在二叉树中,根节点位于深度 0 处,每个深度为 k 的节点的子节点位于深度 k+1 处。

如果二叉树的两个节点深度相同,但 父节点不同 ,则它们是一对堂兄弟节点。

我们给出了具有唯一值的二叉树的根节点 root ,以及树中两个不同节点的值 x 和 y 。

只有与值 x 和 y 对应的节点是堂兄弟节点时,才返回 true 。否则,返回 false。

示例 1:
在这里插入图片描述

输入:root = [1,2,3,4], x = 4, y = 3
输出:false

示例 2:
在这里插入图片描述

输入:root = [1,2,3,null,4,null,5], x = 5, y = 4
输出:true

示例 3:
在这里插入图片描述

输入:root = [1,2,3,null,4], x = 2, y = 3
输出:false

提示:

二叉树的节点数介于 2 到 100 之间。
每个节点的值都是唯一的、范围为 1 到 100 的整数。

深度优先搜索DFS:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    bool isCousins(TreeNode* root, int x, int y) {
        bool ans = false;
        int depth = 0;
        TreeNode* father = nullptr;
        function<bool(TreeNode*, TreeNode*, int)> dfs =
            [&](TreeNode* node, TreeNode* fa, int d) -> bool {
            if (node == nullptr) {
                return false;
            }
            if (node->val == x || node->val == y) {
                if (depth) {
                    ans = depth == d && father != fa;
                    return true;
                }
                depth = d;
                father = fa;
            }
            return dfs(node->left, node, d + 1) ||
                   dfs(node->right, node, d + 1);
        };
        dfs(root, nullptr, 1);
        return ans;
    }
};

236. 二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

示例 1:
在这里插入图片描述

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出:3
解释:节点 5 和节点 1 的最近公共祖先是节点 3 。

示例 2:

在这里插入图片描述

输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出:5
解释:节点 5 和节点 4 的最近公共祖先是节点 5 。因为根据定义最近公共祖先节点可以为节点本身。

示例 3:

输入:root = [1,2], p = 1, q = 2
输出:1

提示:

树中节点数目在范围 [2, 1e5] 内。
-1e9 <= Node.val <= 1e9
所有 Node.val 互不相同 。
p != q
p 和 q 均存在于给定的二叉树中。

参考了题解,递归:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == nullptr || root == p || root == q) {
            return root;
        }
        auto left = lowestCommonAncestor(root->left, p, q);
        auto right = lowestCommonAncestor(root->right, p, q);
        if (left && right) {
            return root;
        }
        return left ? left : right;
    }
};

94. 二叉树的中序遍历

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例 1:

在这里插入图片描述

输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]

提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
    void midorder(TreeNode* cur, vector<int>& vec) {
        if (cur == NULL) {
            return;
        }
        midorder(cur->left, vec);
        vec.push_back(cur->val);
        midorder(cur->right, vec);
    }

public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> vec;
        midorder(root, vec);
        return vec;
    }
};

144. 二叉树的前序遍历

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:
在这里插入图片描述

输入:root = [1,null,2,3]
输出:[1,2,3]
示例 2:
在这里插入图片描述

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]
示例 4:

输入:root = [1,2]
输出:[1,2]
示例 5:

输入:root = [1,null,2]
输出:[1,2]

提示:

树中节点数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

过年福利,数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    void preorder(TreeNode* root, vector<int>& vec) {
        if (root == NULL) {
            return;
        }
        vec.push_back(root->val);
        preorder(root->left, vec);
        preorder(root->right, vec);
    }
    vector<int> preorderTraversal(TreeNode* root) {
        vector<int> vec;
        preorder(root, vec);
        return vec;
    }
};

145. 二叉树的后序遍历

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 。

示例 1:
在这里插入图片描述

输入:root = [1,null,2,3]
输出:[3,2,1]
示例 2:

输入:root = []
输出:[]
示例 3:

输入:root = [1]
输出:[1]

提示:

树中节点的数目在范围 [0, 100] 内
-100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

仍然是数据结构基础:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    void lastorder(TreeNode *cur,vector<int> &vec){
        if(cur==NULL){
            return;
        }
        
        lastorder(cur->left,vec);
        lastorder(cur->right,vec);
        vec.push_back(cur->val);
        

    }
    vector<int> postorderTraversal(TreeNode* root) {
        vector<int> vec;
        lastorder(root,vec);
        return vec;
    }
};

987. 二叉树的垂序遍历

给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。

对位于 (row, col) 的每个结点而言,其左右子结点分别位于 (row + 1, col - 1) 和 (row + 1, col + 1) 。树的根结点位于 (0, 0) 。

二叉树的 垂序遍历 从最左边的列开始直到最右边的列结束,按列索引每一列上的所有结点,形成一个按出现位置从上到下排序的有序列表。如果同行同列上有多个结点,则按结点的值从小到大进行排序。

返回二叉树的 垂序遍历 序列。

示例 1:

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[9],[3,15],[20],[7]]
解释:
列 -1 :只有结点 9 在此列中。
列 0 :只有结点 3 和 15 在此列中,按从上到下顺序。
列 1 :只有结点 20 在此列中。
列 2 :只有结点 7 在此列中。
示例 2:
在这里插入图片描述

输入:root = [1,2,3,4,5,6,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
列 -2 :只有结点 4 在此列中。
列 -1 :只有结点 2 在此列中。
列 0 :结点 1 、5 和 6 都在此列中。
1 在上面,所以它出现在前面。
5 和 6 位置都是 (2, 0) ,所以按值从小到大排序,5 在 6 的前面。
列 1 :只有结点 3 在此列中。
列 2 :只有结点 7 在此列中。
示例 3:

在这里插入图片描述

输入:root = [1,2,3,4,6,5,7]
输出:[[4],[2],[1,5,6],[3],[7]]
解释:
这个示例实际上与示例 2 完全相同,只是结点 5 和 6 在树中的位置发生了交换。
因为 5 和 6 的位置仍然相同,所以答案保持不变,仍然按值从小到大排序。

提示:

树中结点数目总数在范围 [1, 1000] 内
0 <= Node.val <= 1000

菜鸡不会orz 看了大佬们的题解(DFS+哈希):

class Solution {
    map<int, vector<pair<int, int>>> groups;

    void dfs(TreeNode* node, int row, int col) {
        if (node == nullptr) {
            return;
        }

        groups[col].emplace_back(row, node->val);
        dfs(node->left, row + 1, col - 1);
        dfs(node->right, row + 1, col + 1);
    }

public:
    vector<vector<int>> verticalTraversal(TreeNode* root) {
        dfs(root, 0, 0);
        vector<vector<int>> ans;
        for (auto& [_, g] : groups) {
            ranges::sort(g);
            vector<int> vals;
            for (auto& [_, val] : g) {
                vals.push_back(val);
            }
            ans.push_back(vals);
        }
        return ans;
    }
};


102. 二叉树的层序遍历

给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。

示例 1:

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:

输入:root = [1]
输出:[[1]]
示例 3:

输入:root = []
输出:[]

提示:

树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000
BFS+队列:

/**
* Definition for a binary tree node.
* struct TreeNode {
*     int val;
*     TreeNode *left;
*     TreeNode *right;
*     TreeNode() : val(0), left(nullptr), right(nullptr) {}
*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
   vector<vector<int>> levelOrder(TreeNode* root) {
       queue<TreeNode*> que;
       vector<vector<int>> result;

       if (root != NULL)
           que.push(root);
       while (!que.empty()) {
           int size = que.size();
           vector<int> vec;

           for (int i = 0; i < size; i++) {
               TreeNode* node = que.front();
               que.pop();
               vec.push_back(node->val);
               if (node->left)
                   que.push(node->left);
               if (node->right)
                   que.push(node->right);
           }
           result.push_back(vec);
       }
       return result;
   }
};

107. 二叉树的层序遍历 II

给你二叉树的根节点 root ,返回其节点值 自底向上的层序遍历 。 (即按从叶子节点所在层到根节点所在的层,逐层从左向右遍历)

示例 1:
在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:[[15,7],[9,20],[3]]
示例 2:

输入:root = [1]
输出:[[1]]
示例 3:

输入:root = []
输出:[]

提示:

树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000

对比上一道题,只需反转最后的result:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrderBottom(TreeNode* root) {
        queue<TreeNode*> que;
        vector<vector<int>> result;

        if (root != NULL)
            que.push(root);
        while (!que.empty()) {
            int size = que.size();
            vector<int> vec;

            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                vec.push_back(node->val);
                if (node->left)
                    que.push(node->left);
                if (node->right)
                    que.push(node->right);
            }
            result.push_back(vec);
           
        } 
        reverse(result.begin(), result.end());
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/388596.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文精读】CLIP

摘要 以往基于自然语言监督的图像表示学习方法如ConVIRT&#xff0c;只在一二十万张图像的小规模数据集上训练&#xff0c;限制了该方法能发挥的性能。故本文研究了在大规模自然语言监督下训练的图像分类器的性能&#xff0c;具体有&#xff1a; 借助互联网上大量公开可用数据…

【Android】使用Apktool反编译Apk文件

文章目录 1. 下载Apktool1.1 Apktool官网下载1.2 百度网盘下载 2. 安装Apktool3. 使用Apktool3.1 配置Java环境3.2 准备Apk文件3.3 反编译Apk文件3.3.1 解包Apk文件3.3.2 修改Apk文件3.3.3 打包Apk文件3.3.4 签名Apk文件 1. 下载Apktool 要使用Apktool&#xff0c;需要准备好 …

如何手机搜学法减分答案? #媒体#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式&#xff0c;可以快速查找问题解析&#xff0c;加深对题目答案的理解。 1.证件照全能管家&#xff08;APP&#xff09; 一个非常好用的证件照APP 常用的证件照尺寸和底色都有、日常的证件照编辑完全够用&#…

【PyQt6】QScreen 屏幕截屏

文章目录 0 环境1 简介2 QScreen 类2.1 获取 QScreen 的对象2.2 QScreen 的常见信息 3. 示例代码 0 环境 - Python 3.12.1 - PyQt6 6.6.1 pip install PyQt6 PyQt6-Qt6 6.6.1 默认安装PyQt6-sip 13.6.…

C语言学习day13:for循环练习(生成随机数)

题目&#xff1a; 通过程序随机一个1-100的数&#xff0c;用户通过键盘输入数字 看是否匹配&#xff0c;匹配成功则跳出循环&#xff0c;失败则继续循环。 思路&#xff1a; 然后生成一个随机数需要写成死循环&#xff0c;同时需要有其他的出口可以写一个提示&#xff0c;比…

书生浦语大模型实战营-课程作业(3)

下载sentence_transformer的代码运行情况。sentence_transformer用于embedding&#xff08;转向量&#xff09; 本地构建持久化向量数据库。就是把txt和md文件抽取出纯文本&#xff0c;分割成定长&#xff08;500&#xff09;后转换成向量&#xff0c;保存到本地&#xff0c;称…

压缩PDF的大小-Adobe Acrobat Pro

经常遇到上传的pdf太大&#xff0c;无法成功上传。 今天找到一个方法&#xff1a; 打开Adobe Acrobat Pro软件 → 文件 → 另存为其他&#xff08;H&#xff09;... →缩小大小的PDF 版本选择 4.0 最低的版本。 文件由9M变为1.5M。

Vi 和 Vim 编辑器

Vi 和 Vim 编辑器 vi 和 vim 的基本介绍 Linux 系统会内置 vi 文本编辑器 Vim 具有程序编辑的能力&#xff0c;可以看做是 Vi 的增强版本&#xff0c;可以主动的以字体颜色辨别语法的正确性&#xff0c;方便程序设计。 代码补完、编译及错误跳转等方便编程的功能特别丰富&…

C++ bfs反向搜索(五十七)【第四篇】

今天我们来学习bfs的反向搜索。 1.反向搜索 反向搜索&#xff1a;是从目标状态出发进行的搜索&#xff0c;一般用于终点状态唯一&#xff0c;起点状态有多种&#xff0c;且状态转移是可逆的&#xff08;无向边&#xff09;情况。 例题&#xff1a;在一个长度为 n 的坐标轴上&a…

备战蓝桥杯---图论之最短路dijkstra算法

目录 先分个类吧&#xff1a; 1.对于有向无环图&#xff0c;我们直接拓扑排序&#xff0c;和AOE网类似&#xff0c;把取max改成min即可。 2.边权全部相等&#xff0c;直接BFS即可 3.单源点最短路 从一个点出发&#xff0c;到达其他顶点的最短路长度。 Dijkstra算法&#x…

大学建筑专业的搜题软件?大学搜题工具中的高级搜索功能有哪些? #学习方法#微信#经验分享

学习和考试是大学生生活中不可避免的一部分&#xff0c;而在这个信息爆炸的时代&#xff0c;如何快速有效地获取学习资源和解答问题成为了大学生们共同面临的难题。为了解决这个问题&#xff0c;搜题和学习软件应运而生。今天&#xff0c;我将为大家介绍几款备受大学生青睐的搜…

AJAX——接口文档

1 接口文档 接口文档&#xff1a;描述接口的文章 接口&#xff1a;使用AJAX和服务器通讯时&#xff0c;使用的URL&#xff0c;请求方法&#xff0c;以及参数 传送门&#xff1a;AJAX阶段接口文档 <!DOCTYPE html> <html lang"en"><head><meta c…

《数电》理论笔记-第3章-常用组合逻辑电路及MSI组合电路模块的应用

一&#xff0c;编码器和译码器 1&#xff0c;编码器 编码:用由0和1组成的代码表示不同的事物。 编码器:实现编码功能的电路&#xff0c; 常见编码器:普通编码器、优先编码器、二进制编码器二-十进制编码器等等 1.1 三位二进制普通编码器和三位二进制优先编码器 1分58秒开始 …

Cocos2dx-lua ScrollView[一]基础篇

一.ScrollView概述 cocos游戏中ScrollView控件大量使用,95%以上的项目都会使用ScrollView,个别游戏可能全部使用翻页的滑动效果。如果想要精通Cocos的UI开发,精通ScrollView控件非常关键,因此对ScrollView的使用进行总结很有必要。 下文缩写说明:sv = ScrollView, item代…

具有集中目录服务器的 P2P 工作方式

P2P 工作方式概述 在 P2P 工作方式下&#xff0c;所有的音频/视频文件都是在普通的互联网用户之间传输。 具有集中目录服务器的 P2P 工作方式 Napster 最早使用 P2P 技术&#xff0c;提供免费下载 MP3 音乐。 Napster 将所有音乐文件的索引信息都集中存放在 Napster 目录服务…

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术&#xff0c;它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释&#xff1a; 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…

VueCLI核心知识3:全局事件总线、消息订阅与发布

这两种方式都可以实现任意两个组件之间的通信 1 全局事件总线 1.安装全局事件总线 import Vue from vue import App from ./App.vueVue.config.productionTip false/* 1.第一种写法 */ // const Demo Vue.extend({}) // const d new Demo()// Vue.prototype.x d // 把Dem…

2024,欢迎来到性价比时代

「不是XX买不起&#xff0c;而是YY更有性价比。」——翻开过去一年的商业消费史&#xff0c;这句话几乎可以贯穿始终。年轻消费者们追求性价比的眼光一旦定型&#xff0c;一些品牌过去被品质生活、消费升级包装出来的华丽外壳&#xff0c;很容易一击就碎。 胜出的「性价比之王…

多模态基础---BERT

1. BERT简介 BERT用于将一个输入的句子转换为word_embedding&#xff0c;本质上是一个transformer的Encoder。 1.1 BERT的两种训练方法 预测被遮挡的单词预测两个句子是否是相邻的句子 1和2是同时训练的 1.1 BERT的四种用法 预测句子的类别&#xff1a;输入一个句子&…

redis为什么使用跳跃表而不是树

Redis中支持五种数据类型中有序集合Sorted Set的底层数据结构使用的跳跃表&#xff0c;为何不使用其他的如平衡二叉树、b树等数据结构呢&#xff1f; 1&#xff0c;redis的设计目标、性能需求&#xff1a; redis是高性能的非关系型&#xff08;NoSQL&#xff09;内存键值数据…