算法学习——LeetCode力扣贪心篇1

算法学习——LeetCode力扣贪心篇1

在这里插入图片描述

455. 分发饼干

455. 分发饼干 - 力扣(LeetCode)

描述

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

代码解析

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        int num = 0 , s_point = s.size()-1;
        //饼干和孩子排序
        sort(g.begin() , g.end());
        sort(s.begin() , s.end());
		//先用最大的饼干开始喂能吃饱的孩子,吃不饱的跳过不喂
        for(int i=g.size()-1 ; i >= 0 && s_point >=0 ;i--)
        {
            if( s[s_point] >= g[i])
            {
                s_point--; //喂好一个饼干指针减少
                num++;
            }
        }
        return num;
    }
};

376. 摆动序列

376. 摆动序列 - 力扣(LeetCode)

描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

进阶

你能否用 O(n) 时间复杂度完成此题?

代码解析

贪心法

核心思想是找山坡。接替找上山坡和下山坡
在开始由前两个点确定向上还是向下
开始向上,就找向下
开始向下就找向上

在这里插入图片描述

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if(nums.size()==1 ||(nums.size()==2 && nums[0] != nums[1]) ) return nums.size();

        int pre = 0 ,num = 0 ; 
        bool flag ,start = false ;
      
        for(int i=1 ,pre = 0; i<nums.size() ;i++ , pre++) //遍历所有点,pre是前一个点,i是当前点
        {
            if(nums[i] == nums[pre]) continue; //如果遇到相同点跳过
            if(start == false)//start是开始标志,当第一次开始时,确定第一个坡是上山还是下山
            {
                if (nums[i] > nums[pre] ) flag = 0; //第一个坡是上山,flag为0,找下山坡
                else flag = 1;                      //第一个坡是下山,flag为1,找上山坡
                start = true;  //开始正式循环找
                num++;//第一个坡记录
            }
            else if(start == true)
            {
               if(   (flag == 1 && (nums[i] > nums[pre]))      //上一个是下坡,找到上坡了
                   ||(flag == 0 && (nums[i] < nums[pre]))    ) //上一个是上坡,找到下坡了
               {
                   num++; //记录坡数
                   flag = !flag;//标志反转,找完上接着下,进行摆动
               }  
            }
        }
       //num是坡的数量,第一个坡是俩点,补上第一个点+1
        return num+1;
    }
};

dp法
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if(nums.size()==1) return 1;
        
        vector<int> dp(nums.size(),1);
        int flag = -1;
       
        for(int i=1 ; i<nums.size();i++)
        {
            if(flag==-1)
            {
                if(nums[i]-nums[i-1] > 0) 
                {
                    flag=1;
                    dp[i] = dp[i-1] +1;
                }
                else if(nums[i]-nums[i-1] < 0)
                {
                    flag=0;
                    dp[i] = dp[i-1] +1;
                } 
                
                continue;
            }

            if(nums[i]-nums[i-1] > 0 && flag==0 )
            {
                dp[i] = dp[i-1] + 1;
                flag = 1;
            }
            else if(nums[i]-nums[i-1] < 0 && flag==1)
            {
                dp[i] = dp[i-1] + 1;
                flag = 0;
            }else
            {
                dp[i]=dp[i-1];
                continue;
            }

            // cout<<dp[i]<<" ";

        }
        return dp[nums.size()-1];
    }
};

53. 最大子数组和

53. 最大子数组和 - 力扣(LeetCode)

描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

代码解析

贪心法
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        
        int sum=0 ,result= INT32_MIN;      //sum是当前数组的和,result是sum中最大的时候
        for(int i=0 ; i<nums.size() ;i++)
        {
            sum += nums[i];  //记录当前的sum
            if(sum > result) result= sum;  //如果sum大于当前result,更新result
            if(sum < 0) sum = 0;  //某一个时期的sum小于0舍去
        }
        return result;
    }
};

动态规划
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int>  dp(nums.size() ,0);
        int result = INT_MIN;
        dp[0]= nums[0];
        for(int i=1 ; i<nums.size() ;i++)
        {
            dp[i] = max(nums[i],dp[i-1]+nums[i]);
        }
        for(int i=0 ; i<nums.size() ;i++) 
        {
            // cout<<dp[i]<<' ';
            if(dp[i] > result) result = dp[i];
        }
        return result;
    }
};

122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II - 力扣(LeetCode)

描述

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6 - 3 = 3 。
总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5 - 1 = 4 。
总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

提示

  • 1 <= prices.length <= 3 * 104
  • 0 <= prices[i] <= 104

代码解析

贪心算法

核心思想是找到利润。然后利润大于0的相加

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        vector<int> profit; 
        int result = 0;
        for(int i=1 ;i < prices.size(); i++)
        {
            if(prices[i] - prices[i-1] > 0 ) //单日利润大于0的存入
                profit.push_back(prices[i] - prices[i-1]);
        }

        for(int i=0 ; i < profit.size(); i++) //计算利润和
            result += profit[i]; 

        return result;
    }
};

动态规划

dp数组的含义:

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得最多现金

如果第i天持有股票即dp[i][0]

  • 第i-1天就持有股票,那么就保持现状,即:dp[i - 1][0]
  • 第i天买入股票,就是昨天不持有股票的所得现金减去今天的股票价格
    即:dp[i - 1][1] - prices[i]

]如果第i天不持有股票即dp[i][1]的情况

  • 第i-1天就不持有股票,那么就保持现状,即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金
    即:prices[i] + dp[i - 1][0]
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if(prices.size()<=1) return 0;
        vector<vector<int>> dp(prices.size() , vector<int>( 2,0 ) );

        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        for(int i=1 ; i<prices.size() ;i++)
        {
            dp[i][0] = max( dp[i-1][0] , dp[i-1][1] - prices[i] );
            dp[i][1] = max( dp[i-1][1] , dp[i-1][0] + prices[i] );
        }
        return  dp[prices.size()-1][1];
    }
};

55. 跳跃游戏

55. 跳跃游戏 - 力扣(LeetCode)

描述

给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

示例

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

代码解析

回溯法(超时)
class Solution {
public:
    bool backtraking(vector<int>& nums  , int target ,int step)
    {
        if (step == target) return 1; //检验步子能否到达最后点
        else if (step > target) return 0;
        if(nums[step]==0) return 0;
        for(int j=nums[step] ; j >= 1; j--)
        {
            if(backtraking(nums ,target , step + j )) return 1; 
        }
        return 0;
    }
    bool canJump(vector<int>& nums) {
        int target = nums.size() - 1;
        int step = 0;
        return backtraking(nums,target,step);
    }
};

贪心
class Solution {
public:
    bool canJump(vector<int>& nums) {
        int cover=0;
        for(int i=0 ; i<nums.size()-1 && i <= cover ; i++) //循环点,保证点是覆盖范围内的
        {
            if(i+nums[i] > cover ) cover = i+nums[i]; //如果当前点的范围大于现在范围,范围更新
        }
        if(cover >= nums.size()-1) return 1;   //如果范围覆盖最后一个点返回成功
        else return 0;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/387498.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Security实现权限认证与授权

一、Spring Security Spring Security作为Spring家族的安全框架&#xff0c;在安全方面的两个核心功能是认证&#xff08;Authentication&#xff09;和授权&#xff08;Authorization&#xff09;。 &#xff08;1&#xff09;用户认证指的是&#xff1a;验证某个用户是否为系…

证明之缺角正方形网格的铺地砖问题

缺角正方形网格的铺地砖问题 “挑战难题&#xff1a;多米诺骨牌与无法覆盖的方格” 这里有个著名的难题。画八横八纵正方形网格&#xff0c;去掉相对的两个角。你能用多米诺骨牌形状的地砖——每一块正好覆盖两个相邻方格&#xff0c;把剩余部分覆盖吗&#xff1f;我在下图中…

哈希表 ?

哈希表 首先什么是 哈希表&#xff0c;哈希表&#xff08;英文名字为Hash table&#xff0c;国内也有一些算法书籍翻译为散列表&#xff0c;大家看到这两个名称知道都是指hash table就可以了&#xff09;。 哈希表是根据关键码的值而直接进行访问的数据结构。 这么这官方的解释…

php基础学习之运算符(重点在连接符和错误抑制符)

运算符总结 在各种编程语言中&#xff0c;常用的运算符号有这三大类&#xff1a; 算术运算符&#xff1a;&#xff0c;-&#xff0c;*&#xff0c;/&#xff0c;%位运算符&#xff1a;&&#xff0c;|&#xff0c;^&#xff0c;<<&#xff0c;>>赋值运算符&…

【深度学习每日小知识】交并集 (IoU)

交并集 (IOU) 是一种性能指标&#xff0c;用于评估注释、分割和对象检测算法的准确性。它量化数据集中的预测边界框或分段区域与地面实况边界框或注释区域之间的重叠。 IOU 提供了预测对象与实际对象注释的对齐程度的衡量标准&#xff0c;从而可以评估模型准确性并微调算法以改…

全面理解JVM虚拟机

为什么要学JVM&#xff1f; ​ 首先&#xff1a;面试需要。面试题层出不穷&#xff0c;难道每次面试都靠背几百上千条面试八股&#xff1f; ​ 其次&#xff1a;基础决定上层建筑。自己写的代码都不知道是怎么回事&#xff0c;怎么可能写出靠谱的系统&#xff1f; ​ 然后&a…

语言与科技创新(大语言模型对科技创新的影响)

1.科技创新中的语言因素 科技创新中的语言因素至关重要&#xff0c;具体体现在以下几个方面&#xff1a; 科技文献交流&#xff1a; 英语作为全球科学研究的通用语言&#xff0c;极大地推动了科技成果的国际传播与合作。科学家们在发表论文、报告研究成果时&#xff0c;大多选…

Java网络编程 双向通信

目录 网络编程实例创建客户端创建服务端测试 网络编程 Java的网络编程是Java编程语言中用于实现网络通信的一组API和工具。通过Java的网络编程&#xff0c;开发人员可以在Java应用程序中实现客户端和服务器之间的通信&#xff0c;从而构建各种网络应用。 以下是Java网络编程的…

谷歌浏览器安装扩展程序axure-chrome-extension

注&#xff1a; 文末附扩展附件&#xff1a;axure-chrome-extension_v0.7.0.crx 1、安装扩展程序axure-chrome-extension 找到axure-chrome-extension.crx&#xff0c;把axure-chrome-extension.crx后缀改为zip&#xff0c;然后解压&#xff0c;得到一个文件夹 2、打开谷歌浏览…

平时积累的FPGA知识点(6)

平时在FPGA群聊等积累的FPGA知识点&#xff0c;第六期&#xff1a; 1 万兆网接口&#xff0c;发三十万包&#xff0c;会出现掉几包的情况&#xff0c;为什么&#xff1f; 原因&#xff1a;没做时钟约束&#xff0c;万兆网接口的实现&#xff0c;本质上都是高速serdes&#xf…

高程 | 类与对象(c++)

文章目录 &#x1f4da;面向对象程序设计的基本特点&#x1f407;抽象——概括问题&#xff0c;抽出公共性质并加以描述。&#x1f407;封装——将抽象所得数据和行为相结合&#xff0c;形成一个有机的整体&#xff0c;形成“类”。&#x1f407;继承——在原有类特性的基础上&…

重复导航到当前位置引起的。Vue Router 提供了一种机制,阻止重复导航到相同的路由路径。

代码&#xff1a; <!-- 侧边栏 --><el-col :span"12" :style"{ width: 200px }"><el-menu default-active"first" class"el-menu-vertical-demo" select"handleMenuSelect"><el-menu-item index"…

linux内核原理--用户态线性地址空间,mmap,malloc,缺页异常

1.概述 前面我们介绍了内核态线性地址空间划分&#xff0c;及在内核态运行时&#xff0c;如何利用伙伴系统完成连续可用物理页框申请和释放。如何利用小块内存分配器实现高效的动态内存分配和释放。如何利用vmalloc&#xff0c;vfree完成线性地址连续但物理地址不连续的多个页框…

MATLAB|基于改进二进制粒子群算法的含需求响应机组组合问题研究(含文献和源码)

目录 主要内容 模型研究 1.改进二进制粒子群算法&#xff08;BPSO&#xff09; 2.模型分析 结果一览 下载链接 主要内容 该程序复现《A Modified Binary PSO to solve the Thermal Unit Commitment Problem》&#xff0c;主要做的是一个考虑需求响应的机组组合…

【AI视野·今日Robot 机器人论文速览 第七十九期】Thu, 18 Jan 2024

AI视野今日CS.Robotics 机器人学论文速览 Thu, 18 Jan 2024 Totally 43 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers CognitiveDog: Large Multimodal Model Based System to Translate Vision and Language into Action of Quadruped Robot Aut…

探索微信小程序的奇妙世界:从入门到进阶

文章目录 一、什么是微信小程序1.1 简要介绍微信小程序的定义和特点1.2 解释小程序与传统应用程序的区别 二、小程序的基础知识2.1 微信小程序的架构2.2 微信小程序生命周期的理解2.3 探索小程序的目录结构和文件类型 三、小程序框架和组件3.1 深入了解小程序框架的核心概念和原…

ZISUOJ 2022年算法基础公选课练习四(Map)

说明&#xff1a; 博主为了提早预习数据结构和C的一些知识&#xff0c;自己琢磨外加查阅资料所写的代码&#xff0c;题目来源于22年初的学院老师组织的算法基础公选课的练习。我的代码甚至思路肯定存在许多不足和错误&#xff0c;欢迎大家批评指正。 题目列表&#xff1a; 问题…

Python Matplotlib 的学习笔记

Python Matplotlib 的学习笔记 0. Python Matplotlib 简介1. 为什么要用 Matplotlib&#xff1f;2. Matplotlib 基础类详解2-1. Line&#xff08;线&#xff09;2-2. Marker&#xff08;标记&#xff09;2-3. Text&#xff08;文本&#xff09;2-4. Legend&#xff08;图例&…

安卓价值1-如何在电脑上运行ADB

ADB&#xff08;Android Debug Bridge&#xff09;是Android平台的调试工具&#xff0c;它是一个命令行工具&#xff0c;用于与连接到计算机的Android设备进行通信和控制。ADB提供了一系列命令&#xff0c;允许开发人员执行各种操作&#xff0c;包括但不限于&#xff1a; 1. 安…

5种风格非常经典的免费wordpress主题

免费wordpress主题下载 高端大气上档次的wordpress主题&#xff0c;也可以是免费的&#xff0c;可以在线免费下载。 https://www.wpniu.com/themes/288.html wordpress免费主题 高端大气的wordpress免费主题&#xff0c;LOGO在顶部左侧&#xff0c;导航菜单在顶部右侧。 ht…