《Git 简易速速上手小册》第6章:Git 在持续集成/持续部署(CI/CD)中的应用(2024 最新版)

在这里插入图片描述

文章目录

  • 6.1 CI/CD基础
    • 6.1.1 基础知识讲解
    • 6.1.2 重点案例:为 Python Web 应用实现 CI/CD
    • 6.1.3 拓展案例 1:自动化部署到云平台
    • 6.1.4 拓展案例 2:使用 Docker 容器化部署
  • 6.2 Git 与自动化测试
    • 6.2.1 基础知识讲解
    • 6.2.2 重点案例:为 Python 项目集成自动化测试
    • 6.2.3 拓展案例 1:集成测试与 CI 工具
    • 6.2.4 拓展案例 2:使用 Docker 容器运行测试
  • 6.3 部署策略与 Git
    • 6.3.1 基础知识讲解
    • 6.3.2 重点案例:使用 Git 触发 Python 应用的蓝绿部署
    • 6.3.3 拓展案例 1:使用Git标签管理版本和部署
    • 6.3.4 拓展案例 2:实现金丝雀发布

6.1 CI/CD基础

在现代软件开发实践中,持续集成(CI)和持续部署(CD)构成了快速、可靠地将代码从开发带到生产环境的基石。通过自动化测试和部署流程,团队可以更快地迭代和发布,同时保持高质量标准。

6.1.1 基础知识讲解

  • 持续集成(CI):CI 要求团队成员频繁地将代码变更集成到共享仓库中。每次集成都通过自动化构建和测试来验证,以便尽早发现并解决集成错误,提高代码质量。
  • 持续部署(CD):CD 自动化将软件从开发流程中的各个阶段(包括测试和验证)部署到生产环境。它确保了软件的快速、频繁和可靠的发布。
  • 工具和平台:有许多工具和平台支持 CI/CD 实践,包括 Jenkins、Travis CI、CircleCI 和 GitHub Actions 等。它们可以集成到 Git 工作流中,自动执行测试和部署。

6.1.2 重点案例:为 Python Web 应用实现 CI/CD

假设你正在开发一个基于 Flask 的 Python Web 应用,并希望实现 CI/CD 流程来自动化测试和部署。

步骤 1:配置 CI 工具

你选择 GitHub Actions 作为 CI 工具,因为它可以直接在 GitHub 仓库中配置。你创建了 .github/workflows/python-app.yml 文件来定义 CI 工作流程:

name: Python application

on: [push]

jobs:
  build:

    runs-on: ubuntu-latest

    steps:
    - uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.8'
    - name: Install dependencies
      run: |
        python -m pip install --upgrade pip
        pip install flake8 pytest
        if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
    - name: Lint with flake8
      run: |
        flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
    - name: Test with pytest
      run: |
        pytest

这个工作流程会在每次推送到仓库时自动运行,设置 Python 环境,安装依赖,运行 linting 和测试。

6.1.3 拓展案例 1:自动化部署到云平台

你的应用部署在 AWS Elastic Beanstalk 上。在相同的 GitHub Actions 工作流中,你添加了自动化部署的步骤:

    - name: Deploy to Elastic Beanstalk
      run: |
        pip install awsebcli
        eb deploy YourEnvironmentName
      env:
        AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }}
        AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }}

这确保了每次推送更改时,应用都会被自动部署到 AWS。

6.1.4 拓展案例 2:使用 Docker 容器化部署

为了确保环境一致性,你决定使用 Docker 容器化你的 Flask 应用。在 Docker Hub 上创建了一个仓库后,你更新了 CI 工作流,包括构建 Docker 镜像并将其推送到 Docker Hub 的步骤:

    - name: Build and push Docker image
      run: |
        docker build -t yourusername/yourappname:${{ github.sha }} .
        echo ${{ secrets.DOCKER_PASSWORD }} | docker login -u ${{ secrets.DOCKER_USERNAME }} --password-stdin
        docker push yourusername/yourappname:${{ github.sha }}

这样,你的 Flask 应用在每次更改时都会被打包为 Docker 镜像并上传,随后可以从任何支持 Docker 的环境中部署。

通过本章,你已经学会了如何利用 Git 和 CI/CD 工具来自动化你的 Python Web 应用的测试和部署过程。这不仅加快了开发和发布速度,还提高了代码质量和部署的可靠性。现在,让我们继续探索 Git 的更多奥秘,让你的开发流程更加自动化、高效吧!

在这里插入图片描述


6.2 Git 与自动化测试

在软件开发的世界里,自动化测试不仅是一个好习惯,它是保证代码质量和项目稳定性的生命线。与 Git 结合使用时,自动化测试可以在每次提交和合并时验证代码更改,确保新增的代码不会破坏现有的功能或引入新的错误。

6.2.1 基础知识讲解

  • 自动化测试的重要性:自动化测试通过执行一系列的测试用例来验证代码的正确性,这些测试可以是单元测试、集成测试或端到端测试。
  • 与Git结合的自动化测试:通过在 Git 钩子(如 pre-commitpre-push)中触发测试脚本,或在 CI/CD 流程中集成测试,可以确保每次代码提交或部署之前都不会违反测试约束。
  • 测试框架:Python 社区有多种测试框架可用,如 unittestpytest 等,它们可以帮助你编写和执行测试。

6.2.2 重点案例:为 Python 项目集成自动化测试

假设你正在开发一个 Python 库,用于处理日期和时间的计算。你希望在每次提交代码时自动运行单元测试,以确保更改不会引入错误。

步骤 1:编写单元测试

首先,使用 pytest 为你的功能编写单元测试:

# test_datetime_calculations.py
from datetime_calculations import add_days_to_date

def test_add_days_to_date():
    assert add_days_to_date("2021-01-01", 30) == "2021-01-31"

步骤 2:配置 pre-commit 钩子

.git/hooks/pre-commit 文件中,添加以下内容以运行测试:

#!/bin/sh
pytest
if [ $? -ne 0 ]; then
    echo "Tests failed, commit aborted."
    exit 1
fi

不要忘记使钩子脚本可执行:

chmod +x .git/hooks/pre-commit

现在,每次尝试提交时,pytest 都会自动运行,如果任何测试失败,提交将被阻止。

6.2.3 拓展案例 1:集成测试与 CI 工具

你的项目开始增加复杂度,需要集成测试来验证各个组件如何协同工作。你决定使用 GitHub Actions 来自动化这一过程。

.github/workflows/python-app.yml 中配置 CI 工作流:

name: Python application

on: [push]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
    - uses: actions/checkout@v2
    - name: Set up Python
      uses: actions/setup-python@v2
      with:
        python-version: '3.8'
    - name: Install dependencies
      run: |
        pip install pytest
    - name: Run tests
      run: |
        pytest

这样,每次推送到仓库时,GitHub Actions 都会自动运行你的集成测试。

6.2.4 拓展案例 2:使用 Docker 容器运行测试

随着你的应用依赖于更多外部服务,如数据库,你决定使用 Docker 来运行测试,以确保环境的一致性。

你创建了一个 Dockerfiledocker-compose.test.yml 来定义测试环境:

# Dockerfile
FROM python:3.8
WORKDIR /app
COPY . .
RUN pip install pytest
CMD ["pytest"]
# docker-compose.test.yml
version: '3'
services:
  test:
    build: .
    volumes:
      - .:/app

然后,你可以使用以下命令运行测试:

docker-compose -f docker-compose.test.yml up --build

通过本章,你已经探索了如何将 Git 与自动化测试结合,从而提高代码质量和项目稳定性。不管是通过 Git 钩子在本地运行测试,还是通过 CI/CD 工具在云端自动化测试流程,或是在 Docker 容器中确保测试环境的一致性,这些技巧都将成为你软件开发工具箱中不可或缺的部分。继续前进,让自动化测试成为你软件开发过程中的忠实伙伴吧!

在这里插入图片描述


6.3 部署策略与 Git

在软件开发的征程中,如何将代码从仓库安全高效地部署到生产环境,是一个值得深入探讨的话题。Git,作为版本控制的利器,不仅帮助我们管理代码变更,还能与部署策略紧密结合,确保软件交付的流畅性和稳定性。

6.3.1 基础知识讲解

  • 部署策略概述:部署策略定义了代码从开发过程中如何移动到生产环境的方法论。常见的策略包括直接部署、蓝绿部署和金丝雀发布。
  • 直接部署:最简单的部署方式,直接将更改推送到生产环境。虽然操作简单,但缺乏灵活性和安全网。
  • 蓝绿部署:同时运行两个生产环境(蓝和绿)。一旦新版本准备就绪(绿),就将流量从旧版本(蓝)切换到新版本,从而减少了部署风险。
  • 金丝雀发布:逐步向用户推出新版本,先从少数用户开始,逐渐扩大范围,以监控新版本的表现并减少风险。

6.3.2 重点案例:使用 Git 触发 Python 应用的蓝绿部署

假设你负责一个用Flask编写的Python Web应用,你决定采用蓝绿部署策略来减少部署风险。

步骤 1:配置Git钩子

你在服务器上配置了一个Git钩子,在post-receive中添加脚本来触发部署流程。

#!/bin/sh
# 在 post-receive 钩子中
git --work-tree=/path/to/green/deployment checkout -f
# 触发脚本来切换蓝绿环境
./switch-blue-green.sh

步骤 2:实施蓝绿切换

switch-blue-green.sh 脚本负责将生产流量从蓝环境切换到绿环境。

#!/bin/bash
# switch-blue-green.sh
# 此脚本假设你有一个负载均衡器能够切换流量
# 切换流量到绿环境
echo "切换到绿环境"
# 更新负载均衡器配置的逻辑

6.3.3 拓展案例 1:使用Git标签管理版本和部署

在一个更成熟的CI/CD流程中,你可以使用Git标签来标记发布版本。这样,每次部署都基于一个确切的版本,增加了可追溯性。

步骤:在你的本地仓库,当你准备发布新版本时:

git tag -a v1.0.1 -m "Release version 1.0.1"
git push origin v1.0.1

然后,你的CI/CD流程可以配置为在新标签被推送时自动部署对应的版本到生产环境。

6.3.4 拓展案例 2:实现金丝雀发布

为了渐进式地部署新版本,你决定实施金丝雀发布。这需要更复杂的基础设施支持,如可以根据特定规则路由流量的负载均衡器。

步骤:通过Git分支来管理不同的发布阶段。例如,将新功能合并到canary分支,并配置CI/CD工具在这个分支上的更新触发金丝雀发布流程。

git checkout canary
git merge feature/new-awesome-feature
git push origin canary

CI/CD工具检测到canary分支的更新后,自动部署这些更改到仅限一小部分用户访问的环境。根据反馈,你可以决定是否将更改推广到所有用户。

通过本章,你已经了解了如何利用Git和不同的部署策略来优化你的软件交付过程。蓝绿部署和金丝雀发布提供了安全网,让你可以更自信地发布新版本,而Git的灵活性则确保了整个过程的顺畅和高效。现在,让我们继续探索,将这些策略应用到你的项目中,为你的用户带来更好的软件体验吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/385678.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

二叉树的垂直遍历

1.题目 这道题是2024-2-13的签到题,题目难度为困难。 考察的知识点是DFS算法和自定义排序。 题目链接:二叉树的垂直遍历 给你二叉树的根结点 root ,请你设计算法计算二叉树的 垂序遍历 序列。 对位于 (row, col) 的每个结点而言&#xff…

卷积神经网络(CNN)

本文仅在理论方面讲述CNN相关的知识,并给出AlexNet, Agg, ResNet等网络结构的代码。 1.构成 ​ 由输入层、卷积层、池化层、全连接层构成。 输入层:输入数据卷积层:提取图像特征池化层:压缩特征全连接层:为输出准备…

解锁未来:探秘Zxing二维码技术的神奇世界

解锁未来:探秘Zxing二维码技术的神奇世界 1. 引言 在当今数字化和智能化的社会中,二维码技术已经成为人们生活中不可或缺的一部分。从商品购物、支付结算到健康码、门票核销,二维码无处不在,极大地方便了人们的生活和工作。而Zx…

mysq开启慢查询日志,对慢查询进行优化

1.创建实验的环境 创建对应的数据库,然后写脚本向数据库中写入400万条的数据 //创建实验用的数据库 CREATE DATABASE jsschool;//使用当前数据库 USE jsschool;//创建学生表 CREATE TABLE student (sno VARCHAR(20) PRIMARY KEY COMMENT 学生编号,sname VARCHAR(20…

Java 基于springboot+vue的民宿管理系统,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

喝酒到天亮,时刻不敢忘,人间值得——“早”读

春节你小酌了嘛? 引言代码第一篇 人民日报 【夜读】这三句话,致新一年的自己第二篇(跳)李白如何穿越“来”春晚?揭秘→第三篇(跳)人民日报 来啦 新闻早班车要闻社会 政策结尾 引言 完蛋 这个早读…

1. pick gtk dll 程序的制作

文章目录 前言预览细节要点初始窗口尺寸提示音快速提示信息对话框AlertDialog鼠标移入移出事件布局与父子控件关系图片 后续源码及资源 前言 在之前的打包测试中我提到了需要一个挑选dll的程序于是我打算用Gtk来制作这个程序 预览 细节要点 初始窗口尺寸 只有主窗口有set_d…

数学建模:K-means聚类手肘法确定k值(含python实现)

原理 当K-means聚类的k值不被指定时,可以通过手肘法来估计聚类数量。   在聚类的过程中,随着聚类数的增大,样本划分会变得更加精细,每个类别的聚合程度更高,那么误差平方和(SSE)会逐渐变小&am…

【数据存储+多任务爬虫】

数据存储 peewee模块 第三方模块,也需要在cmd中安装。 from peewee import *db MySQLDatabase("spider",host"127.0.0.1",port3306,userroot,password123456 )# 类》表 class Person(Model):name CharField(max_length20) # 类型/约束bi…

基于python深度学习的中文情感分析的系统,附源码

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…

利用pandas库进行数据分析

一.这段代码的主要目的是读取IMDB电影数据集,并进行一些基本的数据分析 # codingutf-8 import pandas as pd import numpy as np from matplotlib import pyplot as plt# 定义CSV文件的路径 file_path ./IMDB-Movie-Data.csv# 使用pandas的read_csv函数读取CSV文件…

Codeforces Round 113 (Div. 2)E. Tetrahedron(dp、递推)

文章目录 题面链接题意题解代码总结 题面 链接 E. Tetrahedron 题意 从一个顶点出发走过路径长度为n回到出发点的方案总数 题解 考虑dp f [ i ] [ 0 ∣ 1 ∣ 2 ∣ 3 ] f[i][0|1|2|3] f[i][0∣1∣2∣3]:走了i步,现在在j点的方案总数 转移: f [ i ]…

力扣(LeetCode)数据结构练习题

今天来分享两道力扣(LeetCode)的题目来巩固上篇时间复杂度和空间复杂度的知识,也就是在题目上加上了空间复杂度和时间复杂度的限制。 目录 给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素&#xff0c…

ubuntu下如何查看显卡及显卡驱动

ubuntu下如何查看显卡及显卡驱动 使用nvidia-smi 工具查看 查看显卡型号nvida-smi -L $ nvidia-smi -L GPU 0: NVIDIA GeForce RTX 3050 4GB Laptop GPU (UUID: GPU-4cf7b7cb-f103-bf56-2d59-304f8996e28c)当然直接使用nvida-smi 命令可以查看更多信息 $ nvidia-smi Mon Fe…

关于在分布式环境中RVN和使用场景的介绍3

简介 在《关于在分布式环境中RVN和使用场景的介绍2》和《关于在分布式环境中RVN和使用场景的介绍1》中我们介绍了RVN的概念和在一些具体用例中的使用。在本文中我们讨论一下在分布式环境中使用RVN需要注意的问题。 问题 我们在收到一条待处理的事件时,需要检查该…

2024.2.9

作业1 请使用递归实现n&#xff01; #include<stdio.h> #include<string.h> #include<stdlib.h>int fun(int m) {if(m0)return 1;else{return m*fun(m-1);} } int main(int argc, const char *argv[]) {int m;printf("please enter m:");scanf(&…

MySQL 升级脚本制作

当数据库更新字段后或添加一些基础信息&#xff0c;要对生产环境进行升级&#xff0c;之前都是手动编写sql&#xff0c;容易出错还容易缺失。 通过 Navcat 工具的数据库结构同步功能和数据同步功能完成数据库脚本的制作。 一、结构同步功能 1、选择 工具–结构同步&#xff1…

从零开始实现消息队列(一)

从零开始实现消息队列 .什么是消息队列需求分析核心概念模型 . 什么是消息队列 相信大家都了解过阻塞队列和生产者消费者模型,而阻塞队列最大的用途,就是用于实现生产者消费者模型,生产者消费者模型有以下好处: 解耦合 解释: 当主机A给主机B发消息时,A给B发送请求,B给A返回响应…

CTFshow web(php命令执行59-67)

web59 <?php /* # -*- coding: utf-8 -*- # Author: Lazzaro # Date: 2020-09-05 20:49:30 # Last Modified by: h1xa # Last Modified time: 2020-09-07 22:02:47 # email: h1xactfer.com # link: https://ctfer.com */ // 你们在炫技吗&#xff1f; if(isset($_POST…

2024.2.8

1. 现有文件test.c\test1.c\main.c,编写Makkefile Makefile&#xff1a; CCgcc EXEa.out OBJS$(patsubst %.c,%.o,$(wildcard *.c)) CFLAGS-c -oall:$(EXE)$(EXE):$(OBJS)$(CC) $^ -o $%.o:%.c$(CC) $(CFLAGS) $ $^.PHONY:cleanclean:rm $(OBJS) $(EXE) 2. C编程实现&#x…