助力智能化农田作物除草,基于轻量级YOLOv8n开发构建农田作物场景下玉米苗、杂草检测识别分析系统

在我们前面的系列博文中,关于田间作物场景下的作物、杂草检测已经有过相关的开发实践了,结合智能化的设备可以实现只能除草等操作,玉米作物场景下的杂草检测我们则少有涉及,这里本文的主要目的就是想要基于最新的YOLOv8下最轻量级的n系列的模型来开发构建玉米田间作物场景下的玉米苗和杂草检测识别系统。

首先看下实例效果:

简单看下实例数据集:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

YOLOv8官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型权重地址如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里给出yolov8的模型文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 3   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

这里因为时间有限,暂时没有能够开发完成五款不同参数量级的模型来进行综合全面的对比分析,后面找时间再进行,这里选择的是YOLOv8下最为轻量级的n系列的模型,等待训练完成后我们来详细看下结果。

Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

【训练可视化】

【Batch实例】

【离线推理实例】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8n

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/385521.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信问一问·流量赚钱专栏

微信问一问流量赚钱专栏 1493读者,104内容 看专栏解百惑,赚到钱 问一问免费涨粉利器 独家更新 100 篇「问一问」经验贴。带你入门,解惑,提效,涨粉,赚小钱 零成本单日公众号涨粉 1000 ,专栏成…

《Java 简易速速上手小册》第9章:Java 开发工具和框架 (2024 最新版)

文章目录 9.1 Maven 和 Gradle - 构建与依赖管理的神兵利器9.1.1 基础知识9.1.2 重点案例:使用 Maven 构建 Spring Boot 应用9.1.3 拓展案例 1:使用 Gradle 构建多模块项目9.1.4 拓展案例 2:利用 Gradle Wrapper 确保构建的一致性 9.2 Spring…

【数据结构】哈希表的开散列和闭散列模拟

哈希思想 在顺序和树状结构中,元素的存储与其存储位置之间是没有对应关系,因此在查找一个元素时,必须要经过多次的比较。 顺序查找的时间复杂度为0(N),树的查找时间复杂度为log(N)。 我们最希望的搜索方式:通过元素的…

计算x的平方根x含负数和复数cmath.sqrt(x)

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 计算x的平方根 x含负数和复数 cmath.sqrt(x) cmath.sqrt(-4)输出的结果是? import cmath import math a 4 print("【显示】a ",a) print("【执行】math.sqrt(a)&…

InstantBox:开箱即用的临时 Linux 环境

在云计算和虚拟化技术日益成熟的今天,我们有时需要一个快速、简单、临时的 Linux 环境来进行各种任务。这就是 InstantBox 的用武之地。 什么是 InstantBox? InstantBox 是一个开源项目,它可以快速启动临时的 Linux 系统,并提供…

HeidiSQL安装配置(基于小皮面板(phpstudy))连接MySQL

下载资源 对于这款图形化工具,博主建议通过小皮面板(phpstudy)来下载即可,也是防止你下载到钓鱼软件,小皮面板(phpstudy)如果你不懂是什么,请看下面链接这篇博客 第二篇:…

Vision Transformer Pytorch 实现代码学习记录

目前运营的社交平台账号: CSDN 【雪天鱼】: 雪天鱼-CSDN博客哔哩哔哩 【雪天鱼】: 雪天鱼个人主页-bilibili.com 可能后续有更新,也可能没有更新,谨慎参考 V1.0 24-02-13 ViT 代码的基本训练, 预测推理脚本运行 1 学习目标 能用官方的 ViT…

React18原理: 核心包结构与两大工作循环

React核心包结构 1 ) react react基础包,只提供定义 react组件(ReactElement)的必要函数一般来说需要和渲染器(react-dom,react-native)一同使用在编写react应用的代码时, 大部分都是调用此包的api比如, 我们定义组件的时候,就是它提供的class Demo ext…

Stream Query Denoising for Vectorized HD Map Construction

参考代码:截止2024.02未开源 动机与出发点 这篇文章是在StreamMapNet的基础上做的,为了在局部地图感知任务上提升时序上的感知稳定性,参考DN-DETR中的去噪方案,为局部地图感知提出一种针对局部地图元素的加噪声方案以及去噪逻辑。…

在线JSON解析格式化工具

在线JSON解析格式化工具 - BTool在线工具软件,为开发者提供方便。JSON在线可视化工具:提供JSON视图,JSON格式化视图,JSON可视化,JSON美化,JSON美化视图,JSON在线美化,JSON结构化,JSON格式化,JSON中文Unicode等等。以清晰美观的结构化视图来展示json,可伸缩折叠展示,…

精品jsp+ssm人事办公管理系统OA考勤考核出入库

《[含文档PPT源码等]精品jspssm基于java的办公管理系统[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功! 使用技术: 开发语言:Java 框架:ssm 技术:JSP JDK版本&…

【Vue】Vue基础入门

📝个人主页:五敷有你 🔥系列专栏:Vue ⛺️稳重求进,晒太阳 Vue概念 是一个用于构建用户界面的渐进式框架优点:大大提高开发效率缺点:需要理解记忆规则 创建Vue实例 步骤: …

微信发送一条消息经历哪些过程。企业微信以及钉钉的IM架构对比

0.前言 微信和钉钉是经常会与到两个IM通讯软件,今天从技术角度对他们两个进行分析。这样也方便对于构建IM系统有更好的了解和认识。如果目标是想构建一个IM即时通信的app或者说想了解一下一条消息的收发会经历什么过程可以详细了解一下。 我们可以想想一下微信发送…

Linux中有名管道和无名管道

无名管道基础 进程间通信介绍 常用通信方式 无名管道(pipe) 有名管道 (fifo) 信号(signal) 共享内存(mmap) 套接字(socket)过时的IPC通信方式 System V IPC 共享内存(sh…

AI大模型开发架构设计(10)——AI大模型架构体系与典型应用场景

文章目录 AI大模型架构体系与典型应用场景1 AI大模型架构体系你了解多少?GPT 助手训练流程GPT 助手训练数据预处理2个训练案例分析 2 AI 大模型的典型应用场景以及应用架构剖析AI 大模型的典型应用场景AI 大模型应用架构 AI大模型架构体系与典型应用场景 1 AI大模型架构体系你…

给你介绍一款适合教培行业的手机软件,很好用,关键还是免费的

给你介绍一款适合教培行业的手机软件,很好用,关键还是免费的,DT浏览器不同于普通意义上的浏览器,DT的含义就是数据资料的意思,更专注于资料的收集和管理,是一款资料管理类的浏览器,也是一款面向…

学生公寓|基于Springboot的学生公寓管理系统设计与实现(源码+数据库+文档)

学生公寓管理系统目录 目录 基于Springboot的学生公寓管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、宿舍列表 2、宿舍公告信息管理 3、宿舍公告类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八…

Solidworks:平面工程图练习

把草图变成工程图,遇到第一个问题是线宽需要用鼠标选中后再设置线宽和颜色。我觉得应该有一个自动设置现款的功能,不知道有没有,我找了半天也没找到。 另一个问题是,作业代号字体上下颠倒了,不知道这是啥意思。 第三个…

使用LORA微调RoBERTa

模型微调是指在一个已经训练好的模型的基础上,针对特定任务或者特定数据集进行再次训练以提高性能的过程。微调可以在使其适应特定任务时产生显着的结果。 RoBERTa(Robustly optimized BERT approach)是由Facebook AI提出的一种基于Transfor…

单片机学习笔记---DS18B20温度传感器

目录 DS18B20介绍 模拟温度传感器的基本结构 数字温度传感器的应用 引脚及应用电路 DS18B20的原理图 DS18B20内部结构框图 暂存器内部 单总线介绍 单总线电路规范 单总线时序结构 初始化 发送一位 发送一个字节 接收一位 接收一个字节 DS18B20操作流程 指令介…