解放双手!ChatGPT助力编写JAVA框架!

摘要

本文介绍了使用 ChatGPT逐步创建 一个简单的Java框架,包括构思、交流、深入优化、逐步完善和性能测试等步骤。

亲爱的Javaer们,在平时编码的过程中,你是否曾想过编写一个Java框架去为开发提效?但是要么编写框架时感觉无从下手,不知道从哪开始。要么有思路了后对某个功能实现的技术细节不了解,空有想法而无法实现。如果你遇到了这些问题,看完这篇文章你也能用ChatGPT编写一个简单的JAVA框架。

构思清晰

首先,你需要明确你的框架要解决什么问题,具有什么特性。这将有助于ChatGPT更好的理解你的需求。

例如:我在一个前后端分离的需求中发现有太多的枚举类的描述需要给前端返回。传统的方式是后端根据枚举类的映射,每个枚举值编写代码映射成描述给前端返回。但这次需求需要给前端返回的枚举描述太多了。这让我和我的小伙伴们感觉无从下手。所以我就思考能否编写一个注解自动帮我们扫描这些枚举类,然后生成key和描述的map,最终放到容器中去呢?

解决问题:解决前后端分离过程中需要手动编写代码将枚举key的描述映射给前端。

特性:框架有一个注解,注解有三个字段name,key,和desc,修饰在枚举类上。框架需提供外部获取枚举map的接口。

与 ChatGPT 交流

启动 ChatGPT,向它讲述你的构想和需求。它可以为你生成初始代码、提供结构建议,甚至帮你处理一些逻辑。

想好了框架要解决的问题和框架的特性之后,接下来就要将框架要解决的问题和特性给总结成一段文字发给ChatGPT。



chatgpt根据我的需求大概生成了下框架的demo版本。可以看到和我设想的还是有些区别的,我想是将枚举放在类上。然后枚举的属性有name,key,和desc。

name:代表枚举map在最外层map中的key。

key:代表枚举的key或值字段。

desc:代表枚举的描述字段。





深入互动

与 ChatGPT 进行更深入的交流,询问它关于代码优化、异常处理等方面的建议。它可以帮你找到更好的解决方案。

接下来需要与ChatGPT进一步交流,让ChatGPT将之前生成的代码进行优化。

EnumInfo注解优化前:



优化后:



逐步完善

逐步引导chatgpt完善框架

在 ChatGPT 的帮助下,逐步完善你的框架。亲自动手编写代码,与 ChatGPT 一起探讨每个细节。

最后可以和ChatGPT一步步交流,让它帮你构建一个完整的框架。



最终慢慢与ChatGPT不断对话迭代之后将框架的核心类生成,迭代过程由于太长故省略。

框架核心类说明

在ChatGPT给出核心代码之后,我参考Spring模块设计最终初版框架类如下:

PackageScanner:用于扫描给定包中带有指定注解的类的实用工具类。

PropertiesUtils:提供操作属性文件的实用方法的工具类。

EnumInfo:用于标注枚举类的注解,指定枚举项的名称、key 字段和 desc 字段信息。 通过在枚举类上添加该注解,可以为枚举项建立索引映射,并指定用于查找 key 和 desc 的字段名称。

EnumContext:枚举上下文类,用于管理枚举定义信息并提供获取枚举信息的方法。

EnumContextFactory:枚举上下文工厂类,用于创建和获取单例的枚举上下文对象。

EnumDefinition:表示枚举定义的类,用于存储枚举类的信息。

EnumDefinitionRegistry:枚举定义注册接口,用于注册、查询和管理枚举定义。

DefaultEnumFactory:默认的枚举定义工厂类,实现了 EnumDefinitionRegistry 接口。



看到这使用ChatGPT编写框架部分已经完成了。大件可以使用chatgpt开发自己的JAVA框架。但要想把框架实际应用到生产还需要做一些收尾流程。

框架使用测试

在于ChatGPT交流,完成框架编写之后需要将框架应用到实际项目中。

笔者业务系统管理端在进行前后端分离的过程中,研发们发现有许多枚举类对应的枚举描述需要给前端返回。

1)一开始设想的是每个枚举类都写代码给前端封装返回文字。但是由于笔者业务系统配置项过多,每个配置项都写代码太过麻烦。

2)于是研发们想能否使用一个统一的接口给前端返回枚举类对应的描述,前端只需要输入枚举类名称就可以获得对应的枚举key和描述的映射关系。

于是我们创建了一个接口,定义了一个Map对象给前端返回枚举类的key和描述的对应关系。但是由于笔者业务系统的渠道配置还是太多了。使用这种方式我们需要初始化这个Map。初始化Map代码如下:

public HashMap<String, Map<Integer, String>> initEnumMap() {
    enumMap = new HashMap<>();
    enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());
    enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());
    enumMap.put("前端获取枚举map的key", XXXEnum.getEnumMap());
    ...
    return enumMap;
}

可见,每新增一个枚举类。我们都需要在静态代码块中将映射关系放入map中。并且枚举类需要新增一个获取key和描述的映射关系方法。这样还是太麻烦了。并且后续新增映射关系还得更改这个类的代码。

能否将map初始化的步骤和枚举类创建map的步骤省略呢?

3)于是我们设想定义一个注解。使用这个注解标记的类,框架扫描这些类。并生成获取枚举key和描述的映射关系的方法。最终完成初始化Map的过程。对外只提供获取总枚举Map的方法即可。用户无需关心Map如何构建。使用这个框架之后,笔者业务系统这个接口的代码如下:

/**
 * 获取枚举
*
 * @param enumKey 枚举key
 * @return 返回值 Map<Integer,String>;code,描述
*/
@RequestMapping("/getEnum")
public Result<Map<String, Map<String, String>>> getEnum(String enumKey) {
    try {
        // 获取枚举上下文对象
        EnumContext enumContext = EnumContextFactory.getEnumContext();
        // 获取枚举map
        newEnumMap = enumContext.getEnumIndexMap();
        // buid映射从ducc中获取,所以需要手动设置
        newEnumMap.put(BUID.getKey(), getBuIdMap());
    } catch (Exception e) {
        log.error("获取枚举map出错!enumKey:{}", enumKey, e);
        return Result.createFail(e.getMessage());
    }
    // 如果枚举key为空则返回全部
    if (StringUtils.isBlank(enumKey)) {
        return Result.createWithSuc(newEnumMap);
    }
    // 如果枚举key不为空则返回指定值
    Map<String, Map<String, String>> resultMap = new HashMap<>();
    resultMap.put(enumKey, newEnumMap.get(enumKey));
    return Result.createWithSuc(resultMap);
}

4)注解类代码如下:

在这举个测试枚举类的例子

@EnumInfo(name = "StatusEnum", key = "code", desc = "description")
public enum StatusEnum {
    SUCCESS(200, "Success"),
    ERROR(500, "Error");

    private final int code;
    private final String description;

    StatusEnum(int code, String description) {
        this.code = code;
        this.description = description;
    }

    public int getCode() {
        return code;
    }

    public String getDescription() {
        return description;
    }
}

以后新增一个枚举类只需要标记@EnumInfo(name = "StatusEnum", key = "code", desc = "description")。将枚举类的name ,key字段名称和描述字段名称指定即可。无需修改接口的代码即可给前端返回该枚举的key和描述的映射关系。极大的减少了研发联调时间及测试回归时间。

框架性能压测

框架应用到实际生产项目中,需要对ChatGPT辅助编写的框架进行充分的测试验证。同时也要对框架的性能进行测试,知道框架的瓶颈。常见的接口压测工具有LoadRunner和Apache JMeter等。任选一种压测工具进行压测即可。

笔者将框架应用到项目中对外暴露了一个接口,该接口在4C4G机器配置下,单机最高可支持1000QPS,在1000QPS下,单机CPU使用率达到30%,系统负载接近0.9,内存使用率与压测前无明显变化。

总结

本文演示了如何使用ChatGPT逐步创建Java框架,解决前后端分离中的问题。以上使用ChatGPT逐步完善框架的经验分享给大家,希望对各位有所帮助。

作者:京东零售交易团队 王凤玺

来源:京东零售技术 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/383105.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

4核8g服务器能支持多少人访问?2024新版测评

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线&#xff1f;通用型-4核8G-180G-2000G&#xff0c;2000GB月流量&#xff0c;系统盘为180GB SSD盘&#xff0c;12M公网带宽&#xff0c;下载速度峰值为1536KB/s&#xff0c;即1.5M/秒&#xff0c;假设网站内页平均大小为60KB…

程序员如何 “高效学习”?

开篇先说说我吧&#xff0c;马上人生要步入30岁的阶段&#xff0c;有些迷茫&#xff0c;更多的是焦虑&#xff0c;因为行业的特殊性导致我无时无刻不对 “青春饭” 的理论所担忧。担忧归担忧&#xff0c;生活还要继续&#xff0c;我们都知道这行全靠 “学习” 二字&#xff0c;…

树莓派编程基础与硬件控制

1.编程语言 Python 是一种泛用型的编程语言&#xff0c;可以用于大量场景的程序开发中。根据基于谷歌搜 索指数的 PYPL&#xff08;程序语言流行指数&#xff09;统计&#xff0c;Python 是 2019 年 2 月全球范围内最为流行 的编程语言 相比传统的 C、Java 等编程语言&#x…

【Linux】Linux下的基本指令

Linux下的基本指令 Linux 的操作特点&#xff1a;纯命令行ls 指令文件 pwd命令Linux的目录结构绝对路径 / 相对路径&#xff0c;我该怎么选择&#xff1f; cd指令touch指令mkdir指令&#xff08;重要&#xff09;rmdir指令rm 指令&#xff08;重要&#xff09;man指令&#xff…

静态时序分析:建立时间分析

静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 在静态时序分析中&#xff0c;建立时间检查约束了触发器时钟引脚&#xff08;时钟路径&#xff09;和输入数据引脚&#xff08;数据路径&#xff09;之间的时序关系&#x…

HSM加密机原理:密钥管理和加密操作从软件层面转移到物理设备中 DUKPT 安全行业基础8

HSM加密机原理 硬件安全模块&#xff08;HSM&#xff09;是一种物理设备&#xff0c;设计用于安全地管理、处理和存储加密密钥和数字证书。HSM广泛应用于需要高安全性的场景&#xff0c;如金融服务、数据保护、企业安全以及政府和军事领域。HSM提供了一种比软件存储密钥更安全…

【前端高频面试题--Vue基础篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;前端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac;前端高频面试题--Vue基础篇 Vue基本原理双向绑定与MVVM模型Vue的优点计算属性与监听属性计算属性监…

QGIS Desktop工具转换png文件为TIF文件

https://qgis.org/ QGIS Desktop 3.34.3 菜单 Layer -> Georeferencer 选择 文件 点击 加载的图片的左上角的点 弹窗中没有数据 录入 0 0 再加入右侧下面的点 调整下 数据 点击 绿色的箭头按钮 输出TIF文件 GeoServer中添加 存储仓库 点击 GeoTIFF 录入&#xff0c;选…

51单片机编程应用(C语言):篮球比赛计分器

设计思路 1.LCD1602显示A 000:B 000 右下角显示24的数字&#xff0c;显示一节时间12&#xff1a;00. 2.规定矩阵键盘每一位表示的含义 s1按下&#xff0c;A队加一分 s2按下&#xff0c;A队加两分 s3按下&#xff0c;A队加三分 s4按下&#xff0c;A队减一分 如…

搜索二维矩阵[中等]

一、题目 给你一个满足下述两条属性的m x n整数矩阵&#xff1a; 【1】每行中的整数从左到右按非严格递增顺序排列。 【2】每行的第一个整数大于前一行的最后一个整数。 给你一个整数target&#xff0c;如果target在矩阵中&#xff0c;返回true&#xff1b;否则&#xff0c;返…

猫头虎分享已解决Bug || 日志文件过大(Log File Oversize):LogFileOverflow, ExcessiveLoggingError

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

数据分析基础之《pandas(6)—高级处理》

一、缺失值处理 1、如何处理nan 两种思路&#xff1a; &#xff08;1&#xff09;如果样本量很大&#xff0c;可以删除含有缺失值的样本 &#xff08;2&#xff09;如果要珍惜每一个样本&#xff0c;可以替换/插补&#xff08;计算平均值或中位数&#xff09; 2、判断数据是否…

springboot178智能学习平台系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

【Make编译控制 06】CMake初步使用

目录 一、概述与安装 二、编译源文件 三、无关文件管理 一、概述与安装 CMake是一个跨平台的项目构建工具&#xff0c;相比于Makefile&#xff0c;CMake更加高级&#xff0c;因为CMake代码在执行的时候是会先翻译生成Makefile文件&#xff0c;再调用Makefile文件完成项目构…

【Linux】学习-基础IO—上

Linux基础IO—上 复习c语言接口 你真的懂文件吗&#xff1f; 文件的打开与关闭 深入了解文件读与写(C语言级别) 系统文件I/O 我们知道&#xff0c;文件是放在磁盘(硬件)上的&#xff0c;我们用代码访问文件的思路是&#xff1a; 写代码 -> 编译 -> 生成可执行exe …

fast.ai 机器学习笔记(三)

机器学习 1&#xff1a;第 8 课 原文&#xff1a;medium.com/hiromi_suenaga/machine-learning-1-lesson-8-fa1a87064a53 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 来自机器学习课程的个人笔记。随着我继续复习课程以“真正”理解它&#xff0c;这些笔记将继续更…

【北邮鲁鹏老师计算机视觉课程笔记】03 edge 边缘检测

【北邮鲁鹏老师计算机视觉课程笔记】03 1 边缘检测 有几种边缘&#xff1f; ①实体上的边缘 ②深度上的边缘 ③符号的边缘 ④阴影产生的边缘 不同任务关注的边缘不一样 2 边缘的性质 边缘在信号突变的地方 在数学上如何寻找信号突变的地方&#xff1f;导数 用近似的方法 可以…

linux 08 文件查找

02. 第一. alias 第二. locate&#xff1a; locate 找不到最近的文件 更新locate 后

【深度学习每日小知识】卷积神经网络(CNN)

在深度学习领域&#xff0c;卷积神经网络&#xff08;CNN&#xff09;彻底改变了视觉分析领域。凭借从图像中提取复杂模式和特征的能力&#xff0c;CNN 已成为图像分类、目标检测和面部识别等任务不可或缺的一部分。本文全面概述了 CNN&#xff0c;探讨了其架构、训练过程、应用…

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代&#xff0c;自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步&#xff0c;信息检索方法也在不断进步&#xff0c;从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中…