蓝桥杯每日一题------背包问题(二)

前言

本次讲解背包问题的一些延申问题,新的知识点主要涉及到二进制优化,单调队列优化DP,树形DP等。

多重背包

原始做法

多重背包的题意处在01背包和完全背包之间,因为对于每一个物品它规定了可选的个数,那么可以考虑将完全背包的第三维修改一下,j2表示选择的当前物品的个数,给它限制为s[i]。代码如下所示,

import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int n = scanner.nextInt();
		int k = scanner.nextInt();
		int[] v = new int[n + 1];
		int[] w = new int[n + 1];
		int[] s = new int[n + 1];
		for (int i = 1; i <= n; i++) {
			v[i] = scanner.nextInt();
			w[i] = scanner.nextInt();
			s[i] = scanner.nextInt();
		}
		int[][] dp = new int[n + 1][k + 1];
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j < k + 1; j++) {
				for (int j2 = 0; j2 * v[i] <= j && j2 <= s[i]; j2++) {
					dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - j2 * v[i]] + j2 * w[i]);
//					dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - j2 * v[i]] + j2 * w[i]);//原本写的j2 = 1开始
				}
			}
		}
		System.out.println(dp[n][k]);
	}
}

这个的时间复杂度是 O ( N ∗ V ∗ S ) = 1000 ∗ 20000 ∗ 20000 = 4 e 11 O(N*V*S)=1000*20000*20000=4e11 ONVS=10002000020000=4e11,时间复杂度太高需要优化。

二进制优化做法

假设最终的选择方案中,第i个物品需要选择p次,按照原始做法,这p次需要遍历p遍才能选出来,那么还有没有其它更快的做法?如果大家学过倍增或者快速幂学的较为深入的话,这里其实就是考虑快速算出数字p,我们很容易想到二进制,二进制可以表示十进制里的任何一个数字。比如p=10,写成二进制是1010,如果我们预处理过每个物品二进制的值,只需要执行4次就可以了,第一次遍历2的3次方,要选择。第二次遍历到2的2次方,不选择。第三次遍历2的1次方,要选择。第四次遍历2的0次方,不选择。
怎么预处理呢?假设s[i]是10,那么把2进制每一位表示的数字都处理出来,让它单独表示一个物品,比如1个物品i(s[i]个还剩9个),2个物品i(s[i]个还剩7个),4个物品i(s[i]个还剩3个),8个物品i(不够8个了,直接剩余的3个作为1组就行。这里为啥不能用8个?如果用了八个,在后续选择的过程中,我选了4个物品i和8个物品i这样就一共选了13个物品i,超出了它的最大可选值)。
预处理后我要怎么用呢?每一个看作单独的一个新物品,那么一个可选个数为S个的物品,可以被处理处logS(以2为底的S的对数)个新物品,那么S的最大值为20000,lon(20000)≈15。现在就变成了每个物品只能选择一个,可以使用01背包的代码,时间复杂度为 O ( N ∗ l o g S ∗ V ) = 1000 ∗ 15 ∗ 20000 = 3 e 8 O(N*logS*V)=1000*15*20000=3e8 ONlogSV=10001520000=3e8。时间复杂度比一开始好了很多,但是对于本题的数据规模还是不能通过。完整代码如下,


import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class Main {
	static class good{
		int v,w;
		public good(int v, int w) {
			super();
			this.v = v;
			this.w = w;
		}
	}
public static void main(String[] args) {
	Scanner scanner = new Scanner(System.in);
	int n = scanner.nextInt();
	int V = scanner.nextInt();
	int[] v = new int[n+1];
	int[] w = new int[n+1];
	int[] s = new int[n+1];
	for (int i = 1; i < w.length; i++) {
		v[i] = scanner.nextInt();
		w[i] = scanner.nextInt();
		s[i] = scanner.nextInt();
	}
	//二进制预处理每一个物品
	List<good> list = new ArrayList<good>();
	list.add(new good(0,0));
	for (int i = 1; i < n+1; i++) {
		for (int j = 1; j <= s[i]; j *= 2) {
			list.add(new good(v[i]*j, w[i]*j));
			s[i] -= j;
		}
		if(s[i]>0) {
			list.add(new good(v[i]*s[i], w[i]*s[i]));
		}
	}
	//01背包代码
	int[][] dp = new int[list.size()][V+1];
	for (int i = 1; i < dp.length; i++) {
		for (int j = 0; j < V+1; j++) {
			dp[i][j] = Math.max(dp[i][j], dp[i-1][j]);
			if(j>=list.get(i).v)
				dp[i][j] = Math.max(dp[i][j], dp[i-1][j-list.get(i).v]+list.get(i).w);
		}
	}
	System.out.println(dp[list.size()-1][V]);
}
}

单调队列优化做法

这个如果光看别人推导还是无法完全理解其中含义,还是需要自己进行推导。我们现在就开始进行推导,算法的本质其实和数学是有一定联系的,如果你光想百思不得其解,那么这个时候就该动笔了,动笔有两个方向,一个是自己推导,一个是根据它的推导结果进行模拟。
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] + w [ i ] , f [ i − 1 ] [ j − 2 ∗ v [ i ] ] + 2 ∗ w [ i ] , f [ i − 1 ] [ j − 3 ∗ v [ i ] ] + 3 ∗ w [ i ] , f [ i − 1 ] [ j − 4 ∗ v [ i ] ] + 4 ∗ w [ i ] ) + . . . , f [ i − 1 ] [ j − t ∗ v [ i ] ] + t ∗ w [ i ] f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-2*v[i]]+2*w[i],f[i-1][j-3*v[i]]+3*w[i],f[i-1][j-4*v[i]]+4*w[i])+...,f[i-1][j-t*v[i]]+t*w[i] f[i][j]=max(f[i1][j],f[i1][jv[i]]+w[i],f[i1][j2v[i]]+2w[i],f[i1][j3v[i]]+3w[i],f[i1][j4v[i]]+4w[i])+...,f[i1][jtv[i]]+tw[i]
当i固定时,其中 j − t ∗ v [ i ] < v [ i ] j-t*v[i]<v[i] jtv[i]<v[i],也就是 r = j − t ∗ v [ i ] r=j-t*v[i] r=jtv[i]是j关于v[i]的余数。r可能的取值为 [ 0 , v [ i ] − 1 ] [0,v[i]-1] [0,v[i]1],对于r来说,我们可以有下述公式,下述公式是上述公式倒推的结果。
f [ i ] [ r ] = f [ i − 1 ] [ r ] f[i][r]=f[i-1][r] f[i][r]=f[i1][r]
f [ i ] [ r + v [ i ] ] = m a x ( f [ i − 1 ] [ r + v [ i ] ] , f [ i − 1 ] [ r ] ) f[i][r+v[i]]=max(f[i-1][r+v[i]],f[i-1][r]) f[i][r+v[i]]=max(f[i1][r+v[i]],f[i1][r])
f [ i ] [ r + 2 ∗ v [ i ] ] = m a x ( f [ i − 1 ] [ r + 2 ∗ v [ i ] , f [ i − 1 ] [ r + v [ i ] ] , f [ i − 1 ] [ r ] ) f[i][r+2*v[i]]=max(f[i-1][r+2*v[i],f[i-1][r+v[i]],f[i-1][r]) f[i][r+2v[i]]=max(f[i1][r+2v[i],f[i1][r+v[i]],f[i1][r])

f [ i ] [ r + s [ i ] ∗ v [ i ] ] = m a x ( f [ i − 1 ] [ r + s [ i ] ∗ v [ i ] ] , f [ i − 1 ] [ r + ( s [ i ] − 1 ) ∗ v [ i ] ] . . . f [ i − 1 ] [ r ] ) f[i][r+s[i]*v[i]]=max(f[i-1][r+s[i]*v[i]],f[i-1][r+(s[i]-1)*v[i]]...f[i-1][r]) f[i][r+s[i]v[i]]=max(f[i1][r+s[i]v[i]],f[i1][r+(s[i]1)v[i]]...f[i1][r])
f [ i ] [ r + ( s [ i ] + 1 ) ∗ v [ i ] ] = m a x ( f [ i − 1 ] [ r + ( s [ i ] + 1 ) ∗ v [ i ] ] , f [ i − 1 ] [ r + s [ i ] ∗ v [ i ] ] . . . f [ i − 1 ] [ r + v [ i ] ] ) f[i][r+(s[i]+1)*v[i]]=max(f[i-1][r+(s[i]+1)*v[i]],f[i-1][r+s[i]*v[i]]...f[i-1][r+v[i]]) f[i][r+(s[i]+1)v[i]]=max(f[i1][r+(s[i]+1)v[i]],f[i1][r+s[i]v[i]]...f[i1][r+v[i]])
对于第i个物品,最多只能选择s[i]个,一开始的体积是(s[i]+1)*v[i],体积变成r+v[i]时,已经选了s[i]个物品,后续不能再选择了。如果学过滑动窗口其实可以理解成窗口的大小为s[i]+1,这里的+1来源于不选择第i个物品,其余是依次选择1个,2个…s[i]个物品。
再接着向后写,最后一个是
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v [ i ] ] . . . f [ i − 1 ] [ j − s [ i ] ∗ v [ i ] ] ) f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]...f[i-1][j-s[i]*v[i]]) f[i][j]=max(f[i1][j],f[i1][jv[i]]...f[i1][js[i]v[i]])
f[i][j]等于对大小为s[i]+1的窗口取最大值,用单调队列去维护,这里只需要O(1)的时间复杂度,那么对于第1维度当前考虑前i个物品,不能省略,和以前一样。对于第2个维度,体积,这里只需要遍历j对于v[i]的余数r即可,然后再来一个for循环,遍历当前的体积,但是他是在r的基础上累加v[i]直到大于总体积j,那么虽然这里是两个for循环遍历的体积,但是总的次数依然是从体积的次数,只不过改变了遍历的顺序,先遍历对v[i]取模余0的体积大小,再遍历对v[i]取模余1的体积大小,依次类推。看一下这里的代码,

for(int i = 1;i <= N;i++) {
		for(int r = 0;r < v[i];r++) {
			for(int j = r;j <= M;j += v[i]) {
			}
		}
	}

所以这个思路的时间复杂度是 O ( N ∗ V ) = 1000 ∗ 20000 = 2 e 7 O(N*V)=1000*20000=2e7 O(NV)=100020000=2e7,此时的时间复杂度就符合要求。本题的关键在于理解上述for循环,理解这里后面就是顺理成章的事情。
接下来考虑单调队列实现滑动窗口。这里简单介绍一下滑动窗口,假设有一个长度为10的数组,滑动窗口的大小是3,求滑动窗口里的最大值,其过程如下,
从数组下标为1初开始遍历,依次向队列里面添加元素。
第一个while循环把此时不在窗口内的数字从队列里面删除。
假设此时在队列里面的数组下标分别为1,2,3,4。队尾元素减队头元素+1就是此时队列里的元素个数(注意这里存的是数组对应的下标),如果大于3,需要将队头元素移除(因为对头元素是最早进入队列的,比如这个例子里就要把数字1移除)。重复上述过程,直到队列里面的元素个数等于3。
但是对于本题而言,所谓的下标表示的是此时的体积,只要体积之差不超过s[i]*v[i]即可,注意这里的灵活变通,代码如下,

while(!queue.isEmpty()&&j-queue.peekFirst()>s[i]*v[i]) queue.pollFirst();

第二个while循环把后续不会对答案构成贡献的数字提前删掉。当前维护的是窗口里的最大值,那么对于队列而言,队头元素维护的就是最大值,整个队列从队头到队尾是单调递减序列。那么如果新加入的元素是要放在队尾的,如果它比此时队尾的元素大,就要删除队尾的元素,重复执行,直到它比队尾的元素小,或者队列为空。(原因:假设队列里此时有2,3,4,此时要加入5,a[5]>a[4],也就是说如果窗口内同时存在a[4]和a[5],a[5]会是最大值,也就是只要有a[5]存在a[4]永远不会成为最大值,而随着窗口的移动,a[4]会先被移走,所以只要a[4]在,a[5]一定在,那么a[4]不会对答案产生贡献,直接删除不会造成影响)
注意对于本题而言,对应的值应该加上这几个物品的价值,代码如下,

while(!queue.isEmpty()&&dp[i-1][queue.peekLast()]+(j-queue.peekLast())/v[i]*w[i]<=dp[i-1][j]) queue.pollLast();

( j − q u e u e . p e e k L a s t ( ) ) / v [ i ] (j-queue.peekLast())/v[i] (jqueue.peekLast())/v[i]表示对于体积为j时,选择的第i个物品的个数。
while结束后,把当前值插入队列,这里插入的是dp[i-1][j],但是队列里面只记录j,所以插入的是j,然后把队列的最大值赋值给dp[i][j]。代码如下,

queue.add(j);
dp[i][j] = dp[i-1][queue.peekFirst()]+(j-queue.peekFirst())/v[i]*w[i];

注意对于每一个物品队列是不同的,所以要有清空队列的操作,完整代码如下,

import java.util.ArrayDeque;
import java.util.Queue;
import java.util.Scanner;

public class Main{
public static void main(String[] args) {
	Scanner scanner = new Scanner(System.in);
	int N = scanner.nextInt();
	int M = scanner.nextInt();
	int v[] = new int[N+1];
	int w[] = new int[N+1];
	int s[] = new int[N+1];
	for(int i = 1;i <= N;i++) {
		v[i] = scanner.nextInt();
		w[i] = scanner.nextInt();
		s[i] = scanner.nextInt();
	}
	int dp[][] = new int[N+1][M+1];
	ArrayDeque<Integer> queue = new ArrayDeque<Integer>();
	for(int i = 1;i <= N;i++) {
		for(int r = 0;r < v[i];r++) {
			queue.clear();
			for(int j = r;j <= M;j += v[i]) {
				while(!queue.isEmpty()&&j-queue.peekFirst()>s[i]*v[i]) queue.pollFirst();
				while(!queue.isEmpty()&&dp[i-1][queue.peekLast()]+(j-queue.peekLast())/v[i]*w[i]<=dp[i-1][j]) queue.pollLast();
				queue.add(j);
				dp[i][j] = dp[i-1][queue.peekFirst()]+(j-queue.peekFirst())/v[i]*w[i];
			}
		}
	}
	System.out.println(dp[N][M]);
}
}

多重背包就讲完了,主要讲了两种优化方法来应对数据规模较大的情况。

混合背包

在这里插入图片描述

混合背包就是01背包、完全背包、多重背包的结合体,其实完全可以变成多重背包,因为多重背包的s[i]=1时就是01背包,s[i]=∞(用一个比较大的数)时就是完全背包,话不多说,直接看代码吧,这里用的最普通的代码,

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int n = scanner.nextInt();
		int k = scanner.nextInt();
		int[] v = new int[n + 1];
		int[] w = new int[n + 1];
		int[] s = new int[n + 1];

		for (int i = 1; i <= n; i++) {
			v[i] = scanner.nextInt();
			w[i] = scanner.nextInt();
			s[i] = scanner.nextInt();
			if (s[i] == -1) {
				s[i] = 1;
			}
			if (s[i] == 0) {
				s[i] = 1000000000;
			}
		}

		int[][] dp = new int[n + 1][k + 1];
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j < k + 1; j++) {
				for (int j2 = 0; j2 * v[i] <= j && j2 <= s[i]; j2++) {
					dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - j2 * v[i]] + j2 * w[i]);
//					dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - j2 * v[i]] + j2 * w[i]);//原本写的j2 = 1开始,可是这样不对
				}

			}
		}
		System.out.println(dp[n][k]);
	}
}

二维费用的背包问题

在这里插入图片描述
类似01背包,只是多了一个维度,那么这里再用之前介绍的动态规划思路来思考一下。
第一步:缩小规模。考虑n个物品,那我就先考虑1个物品,再考虑2个物品…,需要一个维度表示当前考虑的物品个数。
第二步:限制。
(1)所选物品个数不能超过背包容量,那么需要一个维度记录当前背包的容量。
(2)所选物品个数不能超过背包重量,那么需要一个维度记录当前背包的重量。
第三步:写出dp数组。dp[i][j][k]表示当前考虑了前i个物品,背包容量为j,重量为k时的最大价值。
第四步:推状态转移方程。dp[i][j][k]应该从哪里转移过来呢,必然是从前i-1个物品转移,我要考虑两种情况,对于第i个物品,可以选择要它,也可以不要它,如果要第i个物品,我就需要背包里面给我预留出第i个物品的体积和重量,也就是从a[i-1][j-v[i]][k-m[i]]转移,同时也能获得该物品的价值。如果不要第i个物品,那么之前从前一个状态相同容量的背包转移过来就行,即a[i-1][j][k]。
综上状态转移方程如下
a [ i ] [ j ] = m a x ( a [ i − 1 ] [ j ] [ k ] , a [ i − 1 ] [ j − v [ i ] ] [ k − m [ i ] ] + w [ i ] ) a[i][j] = max(a[i-1][j][k],a[i-1][j-v[i]][k-m[i]]+w[i]) a[i][j]=max(a[i1][j][k],a[i1][jv[i]][km[i]]+w[i])
考虑写代码了
第一步:确定好遍历顺序,对于背包问题,一般第一个for遍历规模,第二个for遍历限制,但是我们有两个限制所以需要两个嵌套的for循环分别表示容量和重量。
代码如下,

import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int n = scanner.nextInt();
		int k = scanner.nextInt();//容积
		int mm = scanner.nextInt();//重量
		int[] v = new int[n+1];//容积
		int[] w = new int[n+1];
		int[] m = new int[n+1];//重量
		for (int i = 1; i < n+1; i++) {
			v[i] = scanner.nextInt();//容积
			m[i] = scanner.nextInt();//重量
			w[i] = scanner.nextInt();
		}
		int[][][] dp = new int[n+1][k + 1][mm + 1];
		for (int j = 1; j <= n; j++) {
			for (int i = 1; i <= k; i++) {
				for (int q = 1; q <= mm; q++)
					{
					dp[j][i][q] = dp[j-1][i][q];
					if(i>=v[j]&&q>=m[j])
					    dp[j][i][q] = Math.max(dp[j][i][q], dp[j-1][i - v[j]][q - m[j]] + w[j]);
					}
			}
		}
        //for (int i = 1; i < dp.length; i++) {
			
		//}
		System.out.println(dp[n][k][mm]);
	}
}

分组背包问题


分组背包的关键在于每一组的物品只能选一个,这个要求我们只需要在选物品的时候来进行约束即可,因此dp数组的含义还是和原来一样的。本来是每个物品遍历一次取一个最大值,现在是遍历某一组的物品,选取一个最大值。其实对于完全背包而言,遍历选择多个物品的情况,然后在其中选一个最大值也相当于一个分组,直接看代码吧,


import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Main {
	static class good{
		int v,w;
		public good(int v, int w) {
			super();
			this.v = v;
			this.w = w;
		}	
	}
public static void main(String[] args) {
	Scanner scanner = new Scanner(System.in);
	int n = scanner.nextInt();
	int V = scanner.nextInt();
	List<good> goods[] = new ArrayList[n+1];
	for (int i = 1; i < goods.length; i++) {
		goods[i] = new ArrayList<good>();
		int m = scanner.nextInt();
		for (int j = 0; j < m; j++) {
			goods[i].add(new good(scanner.nextInt(), scanner.nextInt()));
		}
	}
	int[][] dp = new int[n+1][V+1];
	for (int i = 1; i < dp.length; i++) {
		for (int k = 0; k < V+1; k++) {
			dp[i][k] = dp[i-1][k];
			for (int j = 0; j < goods[i].size(); j++) {
				if(goods[i].get(j).v<=k)
				    dp[i][k] = Math.max(dp[i][k], dp[i-1][k-goods[i].get(j).v]+goods[i].get(j).w);
			}
		}	
	}
	System.out.println(dp[n][V]);
}
}

简要分析一下代码,用good去存每一个分组,good[i]存的是第i个分组的物品。
遍历的时候先遍历分组,再遍历背包容量,然后遍历当前分组可以使用的物品,取一个最大值。

有依赖的背包问题

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/382110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

M1 Mac使用SquareLine-Studio进行LVGL开发

背景 使用Gui-Guider开发遇到一些问题&#xff0c;比如组件不全。使用LVGL官方的设计软件开发 延续上一篇使用的基本环境。 LVGL项目 新建项目 选择Arduino的项目&#xff0c;设定好分辨率及颜色。 设计UI 导出代码 Export -> Create Template Project 导出文件如图…

vue+springboot前后端视频文件等的上传与展示(基于七牛云)

前言&#xff1a;在初步说明完成功能之前&#xff0c;我会把重要的部分说明下。后续我会细化。 vue视频文件上传 其实这里和图片这些文件就是一样的。因为上传只是把我们想在云端展示的文件按等传输到云端的bucket。然后方便网站去请求引用。 有人问我我就说明下。这种东西无…

Linux 36.2@Jetson Orin Nano之Hello AI World!

Linux 36.2Jetson Orin Nano之Hello AI World&#xff01; 1. 源由2. Hello AI World&#xff01;3. 步骤3.1 准备阶段3.2 获取代码3.3 Python环境3.4 重点环节3.5 软件配置3.6 PyTorch安装3.7 编译链接3.8 安装更新 4. 测试4.1 video-viewer4.2 detectnet4.3 演示命令 5. 参考…

问题:2、计算机网络的目标是实现________。 #媒体#知识分享

问题&#xff1a;2、计算机网络的目标是实现________。 A&#xff0e;数据处理 B&#xff0e;信息传输与数据处理 C&#xff0e;资源共享与信息传输 D&#xff0e;文献查询 参考答案如图所示

开发者实战 | 如何在 Windows 上调用 NPU 部署深度学习模型

点击蓝字 关注我们,让开发变得更有趣 作者 | 杨亦诚 排版 | 李擎 OpenVINO™..♩~ ♫. ♪.. 相信很多小伙伴都已经知道&#xff0c;在最新一代的 Intel Core Ultra 移动端平台中已经集成了被称为 NPU 的神经网络加速处理器&#xff0c;以提供低功耗的AI算力&#xff0c;特别适合…

代码随想录算法训练营day15||二叉树part02、102.二叉树的层序遍历、 226.翻转二叉树(优先掌握递归)、101. 对称二叉树 (优先掌握递归)

102.二叉树的层序遍历 题目&#xff1a;给你一个二叉树&#xff0c;请你返回其按 层序遍历 得到的节点值。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 接下来我们再来介绍二叉树的另一种遍历方式&#xff1a;层序遍历。 层序遍历一个二叉树。就是…

分布式搜索引擎 elasticsearch

分布式搜索引擎 elasticsearch 第一部分 1.初识elasticsearch 1.1.了解ES 1.1.1.elasticsearch的作用 elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助我们从海量数据中快速找到需要的内容 例如&#xff1a; 在GitHub搜索…

酷开科技荣获消费者服务平台黑猫投诉“消费者服务之星”称号

什么是优质服务&#xff1f;既是以客户为中心的庄严承诺&#xff0c;又是对服务能力提升的深耕细作&#xff1b;既是对服务标准的敬畏&#xff0c;也是对服务创新的不断探索……服务是多维的&#xff0c;每个企业都有自己独到的诠释&#xff0c;或事无巨细环环严控&#xff0c;…

Mybatis开发辅助神器p6spy

Mybatis什么都好&#xff0c;就是不能打印完整的SQL语句&#xff0c;虽然可以根据数据来判断一二&#xff0c;但始终不能直观的看到实际语句。这对我们想用完整语句去数据库里执行&#xff0c;带来了不便。 怎么说呢不管用其他什么方式来实现完整语句&#xff0c;都始终不是Myb…

ongoDB从入门到实战之.NET Core使用MongoDB开发ToDoList系统(2)-Swagger框架集成

Swagger是什么&#xff1f; Swagger是一个规范且完整API文档管理框架&#xff0c;可以用于生成、描述和调用可视化的RESTful风格的 Web 服务。Swagger 的目标是对 REST API 定义一个标准且和语言无关的接口&#xff0c;可以让人和计算机拥有无须访问源码、文档或网络流量监测就…

vivado不使用的引脚约束方法

不需要分配的引脚约束方法:收藏备用 方法一&#xff1a; 方法一&#xff1a; set_property SEVERITY {Warning} [get_drc_checks NSTD-1] set_property SEVERITY {Warning} [get_drc_checks RTSTAT-1] set_property SEVERITY {Warning} [get_drc_checks UCIO-1]#方法二 set_p…

Days 27 ElfBoard 板 AltiumDesigner 相同电路快速布局布线

在进行设计开发的时候&#xff0c;总会遇到相同的电路&#xff0c;或者模块&#xff0c;这些电路可以使用相同的布局和走线&#xff0c;例如 DC-DC 电源、网口 PHY 电路部分。这类型的电路&#xff0c;我们可以采用AltiumDesigner 中的 Room 进行布局和布线的快速复制&#xff…

参观宋代建筑,感受传统魅力

为了更好地了解和传承中华文化&#xff0c;同时深入挖掘其在现代社会的传承与发展&#xff0c;2024年2月8日&#xff0c;曲阜师范大学计算机学院“古韵新声&#xff0c;格物致‘知’”社会实践队队员饶子恒深入考察中国传统建筑和文化&#xff0c;前往山东省菏泽市郓城县的水浒…

数据库管理-第14期 Oracle Vector DB AI-01(20240210)

数据库管理149期 2024-02-10 数据库管理-第149期 Oracle Vector DB & AI-01&#xff08;20240210&#xff09;1 机器学习2 向量3 向量嵌入4 向量检索5 向量数据库5 专用向量数据库的问题总结 数据库管理-第149期 Oracle Vector DB & AI-01&#xff08;20240210&#xf…

Python中HTTP隧道的基本原理与实现

HTTP隧道是一种允许客户端和服务器之间通过中间代理进行通信的技术。这种隧道技术允许代理服务器转发客户端和服务器之间的所有HTTP请求和响应&#xff0c;而不需要对请求或响应内容进行任何处理或解析。Python提供了强大的网络编程能力&#xff0c;可以使用标准库中的socket和…

波奇学Linux:文件重定向和虚拟文件系统

重定向 文件描述符所对应的分配规则&#xff0c;从0开始&#xff0c;寻找最小没有使用的数组位置。 如图所示&#xff0c;关闭文件描述符的0&#xff0c;新打开的文件描述符为0&#xff0c;而关闭2&#xff0c;文件描述符为2。 重定向&#xff1a;文件输出的对象发生改变 例…

【 buuctf snake 】

需要用到 Serpent 加密&#xff0c;蛇也不一定是 snake&#xff0c;serpent 也是蛇的意思。 binwalk -e /Users/xxx/Downloads/snake/snake.jpgbinwalk 提取 key 中有 base64 编码&#xff0c;解密 图源自BUUCTF:snake_buuctf snake-CSDN博客 结果是 anaconda&#xff0c;还有…

Docker 容器网络:C++ 客户端 — 服务器应用程序。

一、说明 在下面的文章中&#xff0c; 将向您概述 docker 容器之间的通信。docker 通信的验证将通过运行 C 客户端-服务器应用程序和标准“ping”命令来执行。将构建并运行两个单独的 Docker 映像。 由于我会关注 docker 网络方面&#xff0c;因此不会提供 C 详细信息。…

30s学会RecyclerView创建动态列表

详细学习请参考官网 使用 RecyclerView 创建动态列表 | Android 开发者 | Android Developers (google.cn) 1.RecyclerView定义及其构造 少废话&#xff0c;就是一个视图控件&#xff0c;就像你刷小红书&#xff0c;东一块西一块很丝滑地滑动 就是 RecyclerView 如下图&a…

【北邮鲁鹏老师计算机视觉课程笔记】01 introduction

1 生活中的计算机视觉 生活中的各种计算机视觉识别系统已经广泛地应用起来了。 2 计算机视觉与其他学科的关系 认知科学和神经科学是研究人类视觉系统的&#xff0c;如果能把人类视觉系统学习得更好&#xff0c;可以迁移到计算机视觉。是计算机视觉的理论基础。 算法、系统、框…