手撕自定义类型:结构体,枚举,联合——【C语言】

 在开始学习之前我们先来欣赏一下五岳之一华山的风景,来营造一个好心情,只有一个好心情我们才能更好的学习

目录

结构体

1 结构体的声明

1.1 结构的基础知识

1.2 结构的声明

1.3 特殊的声明

1.4 结构的自引用

1.5 结构体变量的定义和初始化 

1.6 结构体内存对齐(重点)

1.7 修改默认对齐数 

1.8 结构体传参

 2. 位段

2.1 什么是位段

2.2 位段的内存分配

2.3 位段的跨平台问题

3. 枚举

3.1 枚举类型的定义

3.2 枚举的优点

 3.3 枚举的使用

 4. 联合(共用体)

4. 联合(共用体)

4.2 联合的特点

4.3 联合大小的计算   


结构体

1 结构体的声明

1.1 结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2 结构的声明

struct tag
{
 member-list;
}variable-list;

例如描述一个学生:

struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}; //分号不能丢

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。比如:

//匿名结构体类型
struct
{
 int a;
 char b;
 float c;
}x;
struct
{
 int a;
 char b;
 float c;
}a[20], *p;

 上面的两个结构在声明的时候省略掉了结构体标签(tag)。那么问题来了?

//在上面代码的基础上,下面的代码合法吗?

p = &x;

警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

//代码1
struct Node
{
 int data;
 struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

答案是不可行的,因为在结构体变量中自引用会出现无限套娃的情景。在求struct Node大小时中包含自身,但是自身的大小又是不知道的,所以这总写法是错误的!

正确写法为:

//代码2
struct Node
{
 int data;
 struct Node* next;
};

下面还有一个问题:

在使用typedef重命名时,再自引用指针可以吗?代码如下:

typedef struct
{
 int data;
 Node* next;
}Node;
//这样写代码,可行否?

答案是不行的,因为代码的执行顺序都是从上往下的,typedef重命名在最后才赋予新名字,在结构体中就此运用就是不对的!具体解决方法如下:

typedef struct Node
{
 int data;
 struct Node* next;
}Node;

1.5 结构体变量的定义和初始化 

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1(第一种)
struct Point p2; //定义结构体变量p2(第二种)
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};(第三种)
struct Stu        //类型声明
{
 char name[15];//名字
 int age;      //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
 int data;
 struct Point p;
 struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化(第四种)
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化(第五种)

以上五种方法全部都已代码的形式为大家展示清楚了。 

1.6 结构体内存对齐(重点)

我们已经掌握了结构体的基本使用了。 现在我们深入讨论一个问题:计算结构体的大小。

这也是一个特别热门的考点: 结构体内存对齐!!!

我们先从一个程序说起:

struct S1
{
	char c1;
	int i;
	char c2;
};
int main(void)
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}

struct S1的大小应该为多少呢?我们刚开始一般会觉得是6

 那为什么结果是12呢?我们先通过一个宏offsetof(计算结构体成员相较于结构体起始位置的偏移量)。这个宏在头文件#include<stddef.h>中。

#include<stddef.h>
struct S1
{
	char c1;
	int i;
	char c2;
};
int main(void)
{
	//printf("%d\n", sizeof(struct S1));
	printf("%d\n", offsetof(struct S1, c1));
	printf("%d\n", offsetof(struct S1, i)); 
	printf("%d\n", offsetof(struct S1, c2));
	return 0;
}

  那结构体内容都存满了,为什么还要继续浪费这三个字节呢?? 

我们来学习一下:

如何计算?

首先得掌握结构体的对齐规则:

1. 第一个成员在与结构体变量偏移量为0的地址处。

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8 Linux中没有默认对齐数,对齐数就是成员自身的大小

3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

学习了以上的内存对齐规则,我们应该明白了上面出现了所以疑问,那现在我们在练习一道题:


#include<stddef.h>
struct S1
{
	char c1;
	char c2;
	int i;
};
int main(void)
{
	printf("%d\n", sizeof(struct S1));
	return 0;
}

我们对以上结构体进行具体化分析: 那结果是不是8呢,我们来验证一下: 没错,我相信大家已经基本了解和掌握了结构体内存对齐的。那我们为什么要内存对齐呢?

原因:

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访 问。

总体来说: 结构体的内存对齐是拿空间来换取时间的做法。

 那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
 char c1;
 int i;
 char c2;
};
struct S2
{
 char c1;
 char c2;
 int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

1.7 修改默认对齐数 

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
 char c1;
 int i;
 char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
    //输出的结果是什么?
    printf("%d\n", sizeof(struct S1));
  printf("%d\n", sizeof(struct S2));
    return 0;
}

当我们设置对齐数为1时,相同的结构体的内存大小从12变成6。

1.8 结构体传参

struct S
{
 int data[1000];
 int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
 printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
 printf("%d\n", ps->num);
}
int main()
{
 print1(s);  //传结构体
 print2(&s); //传地址
 return 0;
}

 上面的 print1 和 print2 函数哪个好些?

答案是:首选print2函数。 原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。

 2. 位段

2.1 什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。

2.位段的成员名后边有一个冒号和一个数字。

struct A
{
 int _a:2;
 int _b:5;
 int _c:10;
 int _d:30;
};

A就是一个位段类型。 那位段A的大小是多少? 

struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};
int main()
{
	printf("%d\n", sizeof(struct A));
		return 0;
}

 带着刚才的疑问,我们接着往下看。

2.2 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

举个例子: 

//一个例子
struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

接下来让我们分析一下:

 我们可以一目了然的看出位段在vs中的内存分配。

2.3 位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机 器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是 舍弃剩余的位还是利用,这是不确定的。

总结: 跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3. 枚举

枚举顾名思义就是一一列举。 把可能的取值一一列举。 比如我们现实生活中:性别有:男、女、保密,也可以一一列举。 月份有12个月,也可以一一列举。

3.1 枚举类型的定义

enum Day//星期
{
 Mon,
 Tues,
 Wed,
 Thur,
 Fri,
 Sat,
 Sun
};
enum Sex//性别
{
 MALE,
 FEMALE,
 SECRET
};
enum Color//颜色
{
 RED,
 GREEN,
 BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。 {}中的内容是枚举类型的可能取值,也叫 枚举常量 。

这些可能取值都是有值的,默认从0开始,依次递增1,当然在声明枚举类型的时候也可以赋初值。

 例如:

enum Color//颜色
{
 RED=1,
 GREEN,
 BLUE=4
};
//RED = 1;GREEN = 2; BLUE = 4;

3.2 枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点: 1. 增加代码的可读性和可维护性 2. 和#define定义的标识符比较枚举有类型检查,更加严谨。 3. 便于调试 4. 使用方便,一次可以定义多个常量 

 3.3 枚举的使用

enum Color//颜色
{
 RED=1,
 GREEN=2,
 BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5;               //ok??

 4. 联合(共用体)

4. 联合(共用体)

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。 比如:

union Un
{
	char c;
	int i;
};

int main()
{
	union Un un = { 0 };
	printf("%d\n", sizeof(un));
	printf("%p\n", &un);
	printf("%p\n", &(un.i));
	printf("%p\n", &(un.c));

	return 0;
}

无论访问联合体的哪一块位置,地址都是同一个,这说明联合体中的变量是共用同一块内存空间的,不会针对一个变量开辟一个,而且内存大小为4,为联合体中最大的。

所以联合体中在同一时间只能使用里面的一个元素,要不然就会进行干扰。

我们可以使用一段代码证明一下:

union Un
{
	char c;
	int i;
};
int main()
{
	union Un un = { 0 };
	un.i = 0x11223344;
	un.c = 0x55;

	return 0;
}

4.2 联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联 合至少得有能力保存最大的那个成员)。 

4.3 联合大小的计算   

联合的大小至少是最大成员的大小。

当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。 

我们来练习一下: 

union Un1
{
 char c[5];
 int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));

 结果如何呢?


以上就是所有内容,谢谢观看!!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/38044.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

golang单元测试及mock总结

文章目录 一、前言1、单测的定位2、vscode中生成单测 二、构造测试case的注意事项1、项目初始化2、构造空interface{}3、构造结构体的time.Time类型4、构造json格式的test case 三、运行单测文件1、整体运行单测文件2、运行单个单测文件报错&#xff08;1&#xff09;command-l…

无法找到docker.sock

os环境&#xff1a;麒麟v10(申威) 问题描述&#xff1a; systemctl start docker 然后无法使用docker [rootnode2 ~]# systemctl restart docker [rootnode2 ~]# docker ps Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon r…

PLEX如何搭建个人局域网的视频网站

Plex是一款功能非常强大的影音媒体管理系统&#xff0c;最大的优势是多平台支持和界面优美&#xff0c;几乎可以在所有的平台上安装plex服务器和客户端&#xff0c;让你可以随时随地享受存储在家中的电影、照片、音乐&#xff0c;并且可以实现观看记录无缝衔接&#xff0c;手机…

PROFINET转TCP/IP网关TCP/IP协议的含义是

大家好&#xff0c;今天要和大家分享一款自主研发的通讯网关&#xff0c;远创智控YC-PN-TCPIP。这款网关可是集多种功能于一身&#xff0c;PROFINET从站功能&#xff0c;让它在通讯领域独领风骚。想知道这款网关如何实现PROFINET和TCP/IP网络的连接吗&#xff1f;一起来看看吧&…

iPad远控Windows解决方案

最近入手了一台iPad&#xff0c;但我不想让它沦为爱奇艺的工具&#xff0c;遂考虑如何在iPad上获得桌面级Windows的生产力。主要还是之前背着电脑出远门太累了&#xff0c;这也是促成我买iPad的重要因素。 一种方案就是通过远程控制&#xff0c;在iPad上远程操作自己的电脑&am…

C# PaddleInference OCR 表格识别

效果 项目 VS2022.net4.8OpenCvSharp4Sdcb.PaddleInferenceSdcb.PaddleOCR 测试图片 代码 using OpenCvSharp.Extensions; using OpenCvSharp; using Sdcb.PaddleInference; using Sdcb.PaddleOCR; using Sdcb.PaddleOCR.Models; using Sdcb.PaddleOCR.Models.Details; using…

一次零基础靶机渗透细节全程记录

一、打靶总流程 1.确定目标&#xff1a; 在本靶场中&#xff0c;确定目标就是使用nmap进行ip扫描&#xff0c;确定ip即为目标&#xff0c;只是针对此靶场而言。其他实战中确定目标的方式包括nmap进行扫描&#xff0c;但不局限于这个nmap。 2.信息收集&#xff1a; 比如平常挖…

数据结构(2.1)——时间复杂度和空间复杂度计算

前言 &#xff08;1&#xff09;因为上一篇博客&#xff1a;数据结构&#xff08;2&#xff09;—算法对于时间复杂度和空间复杂度计算的讲解太少。所以我在次增加多个案例讲解。 &#xff08;2&#xff09;上一篇已经详细介绍了&#xff0c;为什么我们的算法要使用复杂度这一个…

Stable Diffusion (持续更新)

引言 本文的目的为记录stable diffusion的风格迁移&#xff0c;采用diffusers example中的text_to_image和textual_inversion目录 2023.7.11 收集了6张水墨画风格的图片&#xff0c;采用textual_inversion进行训练&#xff0c;以"The street of Paris, in the style of …

uniApp之同步资源失败,未得到同步资源的授权,请停止运行后重新运行,并注意手机上的授权提示、adb、shell、package、uninstall

文章目录 背景解决思路执行查找第三方应用的指令执行卸载指令 背景 一开始正常编译运行&#xff0c;由于应用页面有些许奇怪的错误&#xff0c;便想着卸载&#xff0c;重新运行安装调试基座。卸载后&#xff0c;运行还是会出现&#xff0c;明明已经把应用卸载了&#xff0c;还是…

基于深度学习的高精度Caltech行人检测系统(PyTorch+Pyside6+YOLOv5模型)

摘要&#xff1a;基于深度学习的高精度Caltech数据集行人检测识别系统可用于日常生活中或野外来检测与定位行人目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的行人目标检测识别&#xff0c;另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv…

HTTP、HTTPS协议详解

文章目录 HTTP是什么报文结构请求头部响应头部 工作原理用户点击一个URL链接后&#xff0c;浏览器和web服务器会执行什么http的版本持久连接和非持久连接无状态与有状态Cookie和Sessionhttp方法&#xff1a;get和post的区别 状态码 HTTPS是什么ssl如何搞到证书nginx中的部署 加…

什么是人工智能大模型?

目录 1. 人工智能大模型的概述&#xff1a;2. 典型的人工智能大模型&#xff1a;3. 人工智能大模型的应用领域&#xff1a;4. 人工智能大模型的挑战与未来&#xff1a;5. 人工智能大模型的开发和应用&#xff1a;6. 人工智能大模型的学习资源&#xff1a; 人工智能大模型是指具…

计数排序

计数排序 排序步骤 1、以最大值和最小值的差值加一为长度创建一个新数组 2、将索引为0对应最小值&#xff0c;索引为1对应最小值1&#xff0c;索引为2对应最小值2&#xff0c;以此类推&#xff0c;将索引对应最小值到最大值之间所有的值 3、遍历一遍&#xff0c;遇到一个数字…

MyBatis学习笔记之首次开发及文件配置

文章目录 MyBatis概述框架特点 有关resources目录开发步骤从XML中构建SqlSessionFactoryMyBatis中有两个主要的配置文件编写MyBatis程序关于第一个程序的小细节MyBatis的事务管理机制JDBCMANAGED 编写一个较为完整的mybatisjunit测试mybatis集成日志组件 MyBatis概述 框架 在…

Excel VLOOKUP使用详解

VLOOKUP语法格式&#xff1a; VLOOKUP(lookup_value,table_array,col_index_num,range_lookup) VLOOKUP&#xff08;要查找的值&#xff0c;查找区域&#xff0c;要返回的结果在查找区域的第几列&#xff0c;精确匹配或近似匹配&#xff09; 一、精确查找 根据姓名查找对应…

FPGA Verilog移位寄存器应用:边沿检测、信号同步、毛刺滤波

文章目录 1. 端口定义2. 边沿检测3. 信号同步4. 信号滤波5. 源码6. 总结 输入信号的边沿检测、打拍同步、毛刺滤波处理&#xff0c;是FPGA开发的基础知识&#xff0c;本文介绍基于移位寄存器的方式&#xff0c;实现以上全部功能&#xff1a;上升沿、下降沿、双边沿检测、输入信…

个人使用:Windows下 OpenCV 的下载安装(2021.12.4详细)

一、下载OpenCV   到OpenCV官网Release(发布)板块下载OpenCV-4.5.4 Windows。 下载后是这样的 然后双击他&#xff0c;解压&#xff0c;就是大佬们说的安装&#xff0c;实质就是解压一下&#xff0c;解压完出来一个文件夹&#xff0c;其他什么也没发生。你把这个文件夹放在哪…

STM32(HAL库)驱动SHT30温湿度传感器通过串口进行打印

目录 1、简介 2、CubeMX初始化配置 2.1 基础配置 2.1.1 SYS配置 2.1.2 RCC配置 2.2 软件IIC引脚配置 2.3 串口外设配置 2.4 项目生成 3、KEIL端程序整合 3.1 串口重映射 3.2 SHT30驱动添加 3.3 主函数代 3.4 效果展示 1、简介 本文通过STM32F103C8T6单片机通过HAL库…

uniapp uni实人认证

uni实人认证依赖 目前仅支持App平台。 h5端活体人脸检测&#xff0c;使用的是百度云的h5人脸实名认证 使用要求 1、app端 在使用前&#xff0c;请确保您已注册DCloud账号&#xff0c;并已完成实名认证。 然后需要按文档开通服务 业务开通 | uni-app官网 2、h5端 在使用前…