深度学习在知识图谱问答中的革新与挑战

目录

  • 前言
  • 1 背景知识
  • 2 基于深度学习改进问句解析模型
    • 2.1 谓词匹配
    • 2.2 问句解析
    • 2.3 逐步生成查询图
  • 3 基于深度学习的端到端模型
    • 3.1 端到端框架
    • 3.2 简单嵌入技术
  • 4 优势
    • 4.1 深入的问题表示
    • 4.2 实体关系表示深挖
    • 4.3 候选答案排序效果好
  • 5 挑战
    • 5.1 依赖大量训练语料
    • 5.2 推理类问句效果有限
    • 5.3 可解释性差
  • 结语

前言

随着深度学习技术的迅猛发展,其在知识图谱问答领域的应用正成为推动智能问答系统发展的关键因素。本文将深入探讨深度学习在知识图谱问答中的背景知识、对问句解析模型和端到端模型的改进,以及这些方法的优缺点。

1 背景知识

深度学习在知识图谱问答领域的引入展示了一种强大的方法,为问答系统带来了显著的性能提升。通过深度学习技术,系统能够更精准地理解和回答用户提出的问题,推动了整个领域的发展。这一进步主要体现在对问句解析模型和端到端模型的深入研究和改进上。
在这里插入图片描述

深度学习技术的广泛应用为知识图谱问答系统带来了新的活力。通过神经网络等深度学习模型,系统得以更好地理解和处理自然语言,实现对复杂问题的深层次推理。这种方法不仅提高了问答系统的准确性,还使其更具灵活性,能够适应多样的用户输入。

2 基于深度学习改进问句解析模型

深度学习在问句解析模型中的应用,主要体现在谓词匹配、问句解析以及逐步生成查询图等方面。这些改进使得系统在理解用户问题、链接主题实体以及识别核心推断链方面取得显著的进步。谓词匹配技术使系统能够更准确地捕捉关键动词,而层次化的Stagg框架和逐步生成查询图的技术则提高了对复杂问题的解析能力。
在这里插入图片描述

2.1 谓词匹配

谓词匹配成为改进问句解析模型的重要手段。通过谓词匹配技术,系统能够更精准地捕捉问题中的关键动词,从而更好地理解用户的意图。这使得问答系统能够更准确地定位关联实体和知识点,从而提高了答案的精度。

2.2 问句解析

引入Stagg框架为问句解析模型带来了层次化的结构。这种层次化的解析结构使系统更具层次感,有助于更全面地分析复杂的语言结构。通过这样的改进,问答系统能够更准确地把握问题的语义信息,提高问题解析的准确性。

2.3 逐步生成查询图

在这里插入图片描述

Staged Query Graph Generation技术的应用为系统处理复杂问题提供了逐步生成查询图的能力。逐步生成查询图的方式有助于系统有效地处理复杂问题,提高问题解析的精度和效率。这一技术的引入为系统理解复杂问题提供了更灵活的手段,使得问答系统在应对各种情境时更为强大。

在深度学习的引导下,问句解析模型不断创新,通过谓词匹配、Stagg框架以及Staged Query Graph Generation等手段,系统的问题解析能力得到了显著的提升。这为知识图谱问答系统的性能和智能化水平带来了新的巅峰。

3 基于深度学习的端到端模型

端到端模型的引入使得整个问答系统更为高效和简化。深度学习在这一领域的改进主要包括端到端框架、Simple Embeddings、CNN+Attention、Attention+Global Knowledge、Key-Value Memory Networks等。这些模型的应用提高了系统对语义信息的捕捉能力,同时充分利用全局知识进行推理,使得排序检索模型更为精准和高效。

3.1 端到端框架

引入端到端框架的决策简化了整个问答系统的处理流程。该框架使得模型能够直接处理用户输入的问题,并在单一流程中生成相应的答案,从而提高了系统的效率和整体性能。
在这里插入图片描述

3.2 简单嵌入技术

通过应用简单嵌入技术,模型能够更精准地捕捉问题中的语义信息。这种嵌入技术提高了系统对问题的理解能力,使得模型能够更好地区分和理解不同问题类型。

结合卷积神经网络和注意力机制的技术,模型在处理问题时能够更好地捕捉语义信息。整合全局知识进一步提高了模型性能,使得系统能够更全面地利用知识图谱中的信息进行推理和回答。

Key-Value Memory Networks技术的引入增强了模型存储和检索知识的能力。这对于处理大规模知识图谱尤为有益,使得模型能够更灵活地获取并应用广泛的知识,提升了系统的整体智能水平。

引入Neural End-to-End框架和Neural Symbolic Machines两个框架,使得模型在处理问题、查询和生成答案时更好地结合了神经网络和符号推理。这些框架的结合提高了系统对复杂问题的处理能力,使得问答系统在更广泛的场景中表现更为出色。

通过深度学习的不断演进,端到端模型在知识图谱问答中的性能得到了显著提升。这些创新性的技术改进为系统提供了更多工具,使得问答系统能够更灵活、智能地处理各种查询,提高了整体用户体验。

4 优势

4.1 深入的问题表示

深度学习模型能够深入地表征用户的问题,通过对语义信息的准确解析,更好地捕捉问题的含义。这使得系统能够更全面、精准地理解用户的需求,提高了问答的准确性。

4.2 实体关系表示深挖

通过深度学习模型,系统可以更准确地挖掘实体之间的关系。这种深挖实体关系的能力使得系统在回答问题时能够更准确地连接相关知识点,提高了答案的质量和全面性。

4.3 候选答案排序效果好

基于深度学习的端到端排序检索模型在处理问题时表现出色,能够直接生成排序后的候选答案。这使得用户能够更迅速地获取到最相关的信息,提高了问答系统的效率和用户体验。

5 挑战

5.1 依赖大量训练语料

模型的性能高度依赖于大规模的训练语料。对于逻辑复杂的问题,由于语料不足,深度学习模型的性能可能不如传统方法。这使得系统在处理少见或特定领域的问题时可能表现欠佳。

5.2 推理类问句效果有限

在处理涉及推理的问题时,深度学习模型可能表现不如传统方法。由于缺乏对逻辑推理的深层理解,系统在处理涉及多步推理的问题时可能出现效果有限的情况。

5.3 可解释性差

在这里插入图片描述

深度学习模型通常被认为是“黑盒”模型,难以解释其决策过程。这在一些应用场景下可能不被接受,特别是对于需要高度可解释性的领域,如医疗和法律。

虽然基于深度学习的知识图谱问答系统在多方面取得了优势,但仍需要不断改进以解决上述挑战,以更好地适应复杂多变的问答场景。

结语

在知识图谱问答领域,深度学习为系统性能提升提供了新的可能性。通过改进问句解析和端到端的排序检索模型,深度学习模型能够更好地理解用户问题、挖掘实体关系,并生成高质量的答案。然而,仍需解决训练数据不足、推理问题和可解释性等方面的挑战,以更好地满足用户对知识图谱问答系统的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/379645.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【原创 附源码】Flutter海外登录--Tiktok登录最详细流程

最近接触了几个海外登录的平台,踩了很多坑,也总结了很多东西,决定记录下来给路过的兄弟坐个参考,也留着以后留着回顾。更新时间为2024年2月7日,后续集成方式可能会有变动,所以目前的集成流程仅供参考&#…

uniapp的配置和使用

①安装环境和编辑器 注册小程序账号 微信开发者工具下载 uniapp 官网 HbuilderX 下载 首先先下载Hbuilder和微信开发者工具 (都是傻瓜式安装),然后注册小程序账号: 拿到appid: ②简单通过demo使用微信开发者工具和…

Ribbon全方位解析:构建弹性的Java微服务

第1章 引言 大家好,我是小黑,咱们今天聊聊Ribbon,这货是个客户端负载均衡工具,用在Spring Cloud里面能让咱们的服务调用更加灵活和健壮。负载均衡,听起来挺高大上的,其实就是把外界的请求平摊到多个服务器上,避免某个服务器压力太大,其他的却在那儿闲着。 Ribbon的牛…

npm install express -g报错或一直卡着,亲测可解决

问题描述: 最近学习vue3前端框架,安装Node.js之后,在测试是否可行时,cmd窗口执行了:npm install express -g,发现如下图所示一直卡着不动,最后还报错了,网上找了好久,各…

Springboot根据环境读取application配置文件

目录 1. 首先创建两个不同配置文件 2. pom.xml 配置文件 3. 指定环境 4. 最后启动测试 1. 首先创建两个不同配置文件 分别为开发环境和生产环境 application-dev.properties 和 application-prod.properties application-dev.properties 配置为 1931 端口 application-pro…

12个最常用的matplotlib图例 !!

文章目录 1、折线图 2、散点图 3、直方图 4、柱状图 5、箱线图 6、热力图 7、饼图 8、面积图 9、等高线图 10、3D图 11、时间序列图 12、树状图 总结 1、折线图 折线图(Line Plot):用于显示数据随时间或其他连续变量的变化趋势。在实际项目中…

奇异果投屏的进化之路

笔者按:奇异果投屏伴随奇异果TV一路发展至2022年,日活用户已达300多万,用户和我们都对投屏的功能和性能提出了更多的诉求和更高要求,因此2022开始系统地对投屏功能和性能做了扩展和优化。本文立足于TV端,为大家介绍爱奇…

百家cms代审

环境搭建 源码链接如下所示 https://gitee.com/openbaijia/baijiacms 安装至本地后 直接解压到phpstudy的www目录下即可 接下来去创建一个数据库用于存储CMS信息。(在Mysql命令行中执行) 接下来访问CMS,会默认跳转至安装界面 数据库名称和…

spring boot(2.4.x 开始)和spring cloud项目中配置文件application和bootstrap加载顺序

在前面的文章基础上 https://blog.csdn.net/zlpzlpzyd/article/details/136060312 spring boot 2.4.x 版本之前通过 ConfigFileApplicationListener 加载配置 https://github.com/spring-projects/spring-boot/blob/v2.3.12.RELEASE/spring-boot-project/spring-boot/src/mai…

ElasticSearch之search API

写在前面 本文看下查询相关内容,这也是我们在实际工作中接触的最多的,所以有必要好好学习下! 1:查询的分类 主要分为如下2类: 1:基于get查询参数的URI search 2:基于post body的request body search&am…

8868体育助力法甲巴黎圣日耳曼俱乐部 运作球员转会

法甲的巴黎圣日耳曼足球俱乐部是8868的体育助力球队之一,根据法国媒体RMC的消息,巴黎圣日尔曼仍然希望在一月份增强球队的后防实力。虽然之前球队已经从圣保罗引进了20岁的巴西中后卫卢卡斯-贝拉尔多,而这名小将也将会是巴黎圣日耳曼冬窗的一…

nodejs+vue高校实验室耗材管理系统_m20vy

用户功能: 登录后要有一个首页 比如:可以看见目前的耗材消耗记录,可做成图表菜单栏在左侧显示 1.个人信息管理 可以对基本信息进行修改,(修改密码时需要验证) 2.耗材管理(耗材信息) 普通用户可以查询当前相关耗材信息[…

Easy Excel动态表头的实现

步骤: 1.查找官方API文档理解实现 2.实现融入到代码里面 一:Easy Excel动态头实时生成头写入 动态头实时生成头写入 二:实现 目的:实现表头为,第一列是固定列,第二列为动态生成的时间段的每一天的日期…

【JAVA WEB】CSS

目录 CSS是什么? 基本语法规范 引入方式 内部样式表 行内样式表 外部样式表 常用选择器的种类 基础选择器 标签选择器 类选择器 id选择器 通配符选择器 复合选择器 后代选择器 伪类选择器 常用元素属性: 字体属性: 文本属性…

初始web服务器(并基于idea来实现无需下载的tomcat)

前言 前面学习了对应的http协议,我们知道了他是在网络层进行数据传输的协议,负责相应数据以及接收数据的规则,但是在人员开发后端的时候不仅仅需要你写io流进行数据传输,还需要你进行对应的tcp协议来进行数据打包发送http协议-CSD…

Elasticsearch: 非结构化的数据搜索

很多大数据组件在快速原型时期都是Java实现,后来因为GC不可控、内存或者向量化等等各种各样的问题换到了C,比如zookeeper->nuraft(https://www.yuque.com/treblez/qksu6c/hu1fuu71hgwanq8o?singleDoc# 《olap/clickhouse keeper 一致性协调服务》)&a…

安卓服务的常见问题,性能优化以及应用场景剖析

一、引言 在安卓开发中,服务(Service)扮演着至关重要的角色,它们在没有用户界面的情况下,为用户提供了长时间的后台任务执行能力。本文将探讨服务常见问题、优化策略、应用场景以及开发过程中应注意的事项。 二、应用场…

按键扫描16Hz-单片机通用模板

按键扫描16Hz-单片机通用模板 一、按键扫描的原理1、直接检测高低电平类型2、矩阵扫描类型3、ADC检测类型二、key.c的实现1、void keyScan(void) 按键扫描函数①void FHiKey(void) 按键按下功能②void FSameKey(void) 按键长按功能③void FLowKey(void) 按键释放功能三、key.h的…

Qt PCL学习(二):点云读取与保存

注意事项 版本一览:Qt 5.15.2 PCL 1.12.1 VTK 9.1.0前置内容:Qt PCL学习(一):环境搭建 0. 效果演示 1. pcl_open_save.pro QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgets// 添加下行代码&#…

npm 下载报错

报错信息 : 证书过期 (CERT_HAS_EXPIRED) D:\Apps\nodejs-v18.16.1\npx.cmd --yes create-next-app"latest" . --ts npm ERR! code CERT_HAS_EXPIRED npm ERR! errno CERT_HAS_EXPIRED npm ERR! request to https://registry.npm.taobao.org/create-next-app failed…