机器学习-线性回归法

线性回归算法

  • 解决回归问题
  • 思想简单,实现容易
  • 许多强大的非线性模型的基础
  • 结果具有很好的可解释性
  • 蕴含机器学习中的很多重要思想

image.png
样本特征只有一个,称为:简单线性回归
image.png
image.png
image.png
通过分析问题,确定问题的损失函数或者效用函数
通过最优化损失函数或者效用函数,获得机器学习的模型
几乎所有参数学习算法都是这样的套路
image.png

最小二乘法

image.png
image.png
image.png
image.png
image.png
image.png

代码实现 简单线性回归法

加载数据

import numpy as np
import matplotlib.pyplot as plt
x = np.array([1., 2., 3., 4., 5.])
y = np.array([1., 3., 2., 3., 5.])
plt.scatter(x, y)
plt.axis([0, 6, 0, 6])
plt.show()

无标题.png
计算过程

x_mean = np.mean(x)
y_mean = np.mean(y)
num = 0.0
d = 0.0
for x_i, y_i in zip(x, y):
    num += (x_i - x_mean) * (y_i - y_mean)
    d += (x_i - x_mean) ** 2

a = num/d
b = y_mean - a * x_mean
y_hat = a * x + b

绘图

plt.scatter(x, y)
plt.plot(x, y_hat, color='r')
plt.axis([0, 6, 0, 6])
plt.show()

无标题.png
封装我们自己的SimpleLinearRegression

import numpy as np


class SimpleLinearRegression1:

    def __init__(self):
        """初始化Simple Linear Regression 模型"""
        self.a_ = None
        self.b_ = None

    def fit(self, x_train, y_train):
        """根据训练数据集x_train,y_train训练Simple Linear Regression模型"""
        assert x_train.ndim == 1, \
            "Simple Linear Regressor can only solve single feature training data."
        assert len(x_train) == len(y_train), \
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)

        num = 0.0
        d = 0.0
        for x, y in zip(x_train, y_train):
            num += (x - x_mean) * (y - y_mean)
            d += (x - x_mean) ** 2

        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean

        return self

    def predict(self, x_predict):
        """给定待预测数据集x_predict,返回表示x_predict的结果向量"""
        assert x_predict.ndim == 1, \
            "Simple Linear Regressor can only solve single feature training data."
        assert self.a_ is not None and self.b_ is not None, \
            "must fit before predict!"

        return np.array([self._predict(x) for x in x_predict])

    def _predict(self, x_single):
        """给定单个待预测数据x,返回x的预测结果值"""
        return self.a_ * x_single + self.b_

    def __repr__(self):
        return "SimpleLinearRegression1()"

向量化运算

image.png
image.png

class SimpleLinearRegression2:

    def __init__(self):
        """初始化Simple Linear Regression模型"""
        self.a_ = None
        self.b_ = None

    def fit(self, x_train, y_train):
        """根据训练数据集x_train,y_train训练Simple Linear Regression模型"""
        assert x_train.ndim == 1, \
            "Simple Linear Regressor can only solve single feature training data."
        assert len(x_train) == len(y_train), \
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)

        self.a_ = (x_train - x_mean).dot(y_train - y_mean) / (x_train - x_mean).dot(x_train - x_mean)
        self.b_ = y_mean - self.a_ * x_mean

        return self

    def predict(self, x_predict):
        """给定待预测数据集x_predict,返回表示x_predict的结果向量"""
        assert x_predict.ndim == 1, \
            "Simple Linear Regressor can only solve single feature training data."
        assert self.a_ is not None and self.b_ is not None, \
            "must fit before predict!"

        return np.array([self._predict(x) for x in x_predict])

    def _predict(self, x_single):
        """给定单个待预测数据x_single,返回x_single的预测结果值"""
        return self.a_ * x_single + self.b_

    def __repr__(self):
        return "SimpleLinearRegression2()"

衡量线性回归法的指标:MSE,RMSE和MAE

image.png
image.png
image.png
代码演示
加载波士顿房产数据

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()
x = boston.data[:,5] # 只使用房间数量这个特征
y = boston.target

可视化

plt.scatter(x, y)
plt.show()

无标题.png
去除最大值

x = x[y < 50.0]
y = y[y < 50.0]
plt.scatter(x, y)
plt.show()

无标题.png
使用简单线性回归法

from playML.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, seed=666)
from playML.SimpleLinearRegression import SimpleLinearRegression
reg = SimpleLinearRegression()
reg.fit(x_train, y_train)
plt.scatter(x_train, y_train)
plt.plot(x_train, reg.predict(x_train), color='r')
plt.show()

无标题.png
预测

y_predict = reg.predict(x_test)

MSE

mse_test = np.sum((y_predict - y_test)**2) / len(y_test)

RMSE

from math import sqrt

rmse_test = sqrt(mse_test)

MAE

mae_test = np.sum(np.absolute(y_predict - y_test))/len(y_test)

image.png
封装

import numpy as np
from math import sqrt


def accuracy_score(y_true, y_predict):
    """计算y_true和y_predict之间的准确率"""
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"

    return np.sum(y_true == y_predict) / len(y_true)


def mean_squared_error(y_true, y_predict):
    """计算y_true和y_predict之间的MSE"""
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"

    return np.sum((y_true - y_predict)**2) / len(y_true)


def root_mean_squared_error(y_true, y_predict):
    """计算y_true和y_predict之间的RMSE"""

    return sqrt(mean_squared_error(y_true, y_predict))


def mean_absolute_error(y_true, y_predict):
    """计算y_true和y_predict之间的MAE"""

    return np.sum(np.absolute(y_true - y_predict)) / len(y_true)

scikit-learn中的MSE和MAE

from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
mean_squared_error(y_test, y_predict)
mean_absolute_error(y_test, y_predict)

评价回归算法指标:R Square

image.png
image.png
image.png
image.png
代码

1 - mean_squared_error(y_test, y_predict)/np.var(y_test)

封装

import numpy as np
from math import sqrt


def accuracy_score(y_true, y_predict):
    """计算y_true和y_predict之间的准确率"""
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"

    return np.sum(y_true == y_predict) / len(y_true)


def mean_squared_error(y_true, y_predict):
    """计算y_true和y_predict之间的MSE"""
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"

    return np.sum((y_true - y_predict)**2) / len(y_true)


def root_mean_squared_error(y_true, y_predict):
    """计算y_true和y_predict之间的RMSE"""

    return sqrt(mean_squared_error(y_true, y_predict))


def mean_absolute_error(y_true, y_predict):
    """计算y_true和y_predict之间的MAE"""
    assert len(y_true) == len(y_predict), \
        "the size of y_true must be equal to the size of y_predict"

    return np.sum(np.absolute(y_true - y_predict)) / len(y_true)


def r2_score(y_true, y_predict):
    """计算y_true和y_predict之间的R Square"""

    return 1 - mean_squared_error(y_true, y_predict)/np.var(y_true)

scikit-learn中的 r2_score

from sklearn.metrics import r2_score

r2_score(y_test, y_predict)

多元线性回归

image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
代码实现

import numpy as np
from .metrics import r2_score


class LinearRegression:

    def __init__(self):
        """初始化Linear Regression模型"""
        self.coef_ = None
        self.intercept_ = None
        self._theta = None

    def fit_normal(self, X_train, y_train):
        """根据训练数据集X_train, y_train训练Linear Regression模型"""
        assert X_train.shape[0] == y_train.shape[0], \
            "the size of X_train must be equal to the size of y_train"

        X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
        self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)

        self.intercept_ = self._theta[0]
        self.coef_ = self._theta[1:]

        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self.intercept_ is not None and self.coef_ is not None, \
            "must fit before predict!"
        assert X_predict.shape[1] == len(self.coef_), \
            "the feature number of X_predict must be equal to X_train"

        X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
        return X_b.dot(self._theta)

    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""

        y_predict = self.predict(X_test)
        return r2_score(y_test, y_predict)

    def __repr__(self):
        return "LinearRegression()"

使用

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()

X = boston.data
y = boston.target

X = X[y < 50.0]
y = y[y < 50.0]
from playML.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)
from playML.LinearRegression import LinearRegression

reg = LinearRegression()
reg.fit_normal(X_train, y_train)

image.png

scikit-learn中的线性回归

加载数据

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()

X = boston.data
y = boston.target

X = X[y < 50.0]
y = y[y < 50.0]

from playML.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, seed=666)

线性回归

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(X_train, y_train)

image.png
kNN Regressor

from sklearn.preprocessing import StandardScaler
standardScaler = StandardScaler()
standardScaler.fit(X_train, y_train)
X_train_standard = standardScaler.transform(X_train)
X_test_standard = standardScaler.transform(X_test)
from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor()
knn_reg.fit(X_train_standard, y_train)
knn_reg.score(X_test_standard, y_test)

image.png
超参数

from sklearn.model_selection import GridSearchCV

param_grid = [
    {
        "weights": ["uniform"],
        "n_neighbors": [i for i in range(1, 11)]
    },
    {
        "weights": ["distance"],
        "n_neighbors": [i for i in range(1, 11)],
        "p": [i for i in range(1,6)]
    }
]

knn_reg = KNeighborsRegressor()
grid_search = GridSearchCV(knn_reg, param_grid, n_jobs=-1, verbose=1)
grid_search.fit(X_train_standard, y_train)

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/376419.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jsp课程管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 课程管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.0&…

Termux配置安卓编译环境

前言 Termux安装后&#xff0c;就相当于把手机变成了一台Linux服务器&#xff0c;而且现在手机卡通常是能拿到ipv6公网地址的&#xff0c;所以&#xff0c;这个服务器能干啥&#xff1f; 编程搭建网站跑脚本 本文讲述的就是怎么在Termux搭建安卓编译环境&#xff0c;实现手机…

CV | Medical-SAM-Adapter论文详解及项目实现

******************************* &#x1f469;‍⚕️ 医学影像相关直达&#x1f468;‍⚕️******************************* CV | SAM在医学影像上的模型调研【20240207更新版】-CSDN博客 CV | Segment Anything论文详解及代码实现 本文主要讲解Medical-SAM-Adapter论文及项…

HTML 样式学习手记

HTML 样式学习手记 在探索网页设计的世界时&#xff0c;我发现HTML元素的样式调整真的是个很酷的环节。通过简单的属性设置&#xff0c;就能让文字换上五彩斑斓的颜色、变换各异的字体和大小。特别是那个style属性&#xff0c;感觉就像是一扇通往CSS魔法世界的大门。 代码小试…

【Python】虚拟环境miniconda安装(python3.7, python3.x)

背景 使用Python开发项目时&#xff0c;我们一般都需要安装环境&#xff0c;可能是在物理机上直接安装&#xff0c;也可能是在虚拟环境上安装&#xff0c;当前是怎么按照conda环境的示例&#xff0c;可以指定安装Python3.x的所有版本。 安装 首先&#xff0c;需要登录当前的…

零基础学Python之网络编程

1.什么是socket 官方定义&#xff1a; 套接字&#xff08;socket&#xff09;是一个抽象层&#xff0c;应用程序可以通过它发送或接收数据&#xff0c;可对其进行像对文件一样的打开、读写和关闭等操作。套接字允许应用程序将I/O插入到网络中&#xff0c;并与网络中的其他应用…

国产信创领跑者:暴雨信息的创新与实践

随着数字化转型的加速推进&#xff0c;信创产业作为数字经济发展的重要支柱&#xff0c;正日益受到社会各界的广泛关注。在这个大背景下&#xff0c;暴雨信息积极响应国家号召&#xff0c;全面适配国产化&#xff0c;推动信创产业的技术创新和应用拓展&#xff0c;成为了行业的…

AWS创建快照定期备份

备注&#xff1a;aws有快照定期备份工具&#xff0c;名字叫【生命周期管理器】 选择实例点击创建 点击下一步后设置备份频率等 然后点击创建即可

(Python)字典列表数据本地存储工具

前言 一个简单的实现简便 "列表字典" 数据存储本地。 适合不会SQL但又想实现数据存储本地的同学。 操作使用都非常简单。 文件只做了简单的加密处理&#xff0c;如果需要复杂加密的同学可以修改加密函数。 温馨提示&#xff1a; 1.使用前&#xff0c;在项目目录…

人工智能福利站,初识人工智能,图神经网络学习,第三课

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

九思OA user-list-3g sql注入

【产品&&漏洞简述】 九思OA办公软件全面实现协同工作、公文、流程审批、知识管理、项目管理、综合办公、信息共享、移动办公 等应用功能&#xff0c;并能够与其他异构系统整合&#xff0c;打破信息孤岛&#xff0c;建立完整的有效的企业工作平台和移动办公软件。 九思…

(2)(2.14) SPL Satellite Telemetry

文章目录 前言 1 本地 Wi-Fi&#xff08;费用&#xff1a;30 美元以上&#xff0c;范围&#xff1a;室内&#xff09; 2 蜂窝电话&#xff08;费用&#xff1a;100 美元以上&#xff0c;范围&#xff1a;蜂窝电话覆盖区域&#xff09; 3 手机卫星&#xff08;费用&#xff…

ChatGPT学习第一周

&#x1f4d6; 学习目标 掌握ChatGPT基础知识 理解ChatGPT的基本功能和工作原理。认识到ChatGPT在日常生活和业务中的潜在应用。 了解AI和机器学习的基本概念 获取人工智能&#xff08;AI&#xff09;和机器学习&#xff08;ML&#xff09;的初步了解。理解这些技术是如何支撑…

介绍一个关于 JSON 可视化的网站

最近在看到一个比较好玩的网站&#xff0c;可以将 JSON以可视化的方式展现出现&#xff0c;比如存在一下JSON数据&#xff1a; {"id": "f3bbc3bc-9f34-4bf7-8a0f-7e6f6e6fbb9a","isActive": false,"age": 25,"name": "…

阿里云服务器Windows系统无法远程连接到服务器桌面怎么办,选择通过Workbench远程连接进入不是桌面,而是命令行界面

最近发现阿里云的Windows系统服务器&#xff0c;点击“远程连接”后&#xff0c;如果直接点击默认的“通过Workbench远程连接”。 并不能直接进入服务器桌面&#xff0c;而是进入了命令行界面&#xff08;我记得以前是可以的&#xff09; 那么如何进入Windows系统服务器桌面呢 …

C语言第二十弹---指针(四)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、字符指针变量 2、数组指针变量 2.1、数组指针变量是什么&#xff1f; 2.2、数组指针变量怎么初始化 3、⼆维数组传参的本质 4、函数指针变量 4.1…

蓝桥杯Web应用开发-CSS3 新特性

CSS3 新特性 专栏持续更新中 在前面我们已经学习了元素选择器、id 选择器和类选择器&#xff0c;我们可以通过标签名、id 名、类名给指定元素设置样式。 现在我们继续选择器之旅&#xff0c;学习 CSS3 中新增的三类选择器&#xff0c;分别是&#xff1a; • 属性选择器 • 子…

Mysql进阶(锁)

一、锁概述 两个事务的写操作之间的互相影响。隔离性要求同一时刻只能有一个事务对数据进行写操作&#xff0c;InnoDB通过锁机制来保证这一点。 锁机制基本原理&#xff1a; 事务在修改数据之前&#xff0c;需要先获得相应的锁&#xff1b;获得锁之后&#xff0c;事务便可以…

day03.C++函数与指针(含new与delete关键字,函数指针,指针函数,指针数组)

一.指针 #include<iostream> using namespace std; #define pi 3.14159//定义常量int main(){cout<<pi<<endl;int a10;int *pNULL;//定义指针p&a;cout<<"a的地址为&#xff1a;"<<p<<endl;cout<<"a"<&l…

python函数入参、类成员引用支持灵活参数可配

一、背景 python编码时&#xff0c;有可能在不同场景下输入修改的参数&#xff0c;不方便直接写死&#xff0c;因此需要灵活配置这些函数入参&#xff0c;类成员 二、函数入参支持灵活可配 场景&#xff1a;如下场景&#xff0c;对于hello函数&#xff0c;不同场景下想要对不…