文章目录
- 自注意力
- Transformer块
- 编码器
- 解码器块
- 解码器
- 整个Transformer
- 参考来源
- 全部代码(可直接运行)
自注意力
计算公式
代码实现
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be div by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0] # the number of training examples
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(queries)
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys]) # 矩阵乘法,使用爱因斯坦标记法
# queries shape: (N, query_len, heads, heads_dim)
# keys shape: (N, key_len, heads, heads_dim)
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask==0, float("-1e20"))
#Fills elements of self tensor with value where mask is True
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads*self.head_dim
) # 矩阵乘法,使用爱因斯坦标记法einsum
# attention shape: (N, heads, query_len, key_len)
# values shape: (N, value_len, heads, head_dim)
# after einsum (N, query_len, heads, head_dim) then flatten last two dimensions
out = self.fc_out(out)
return out
Transformer块
我们把Transfomer块定义为如下图所示的结构,这个Transformer块在编码器和解码器中都有出现过。
代码实现
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion):
super(TransformerBlock, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion*embed_size),
nn.ReLU(),
nn.Linear(forward_expansion*embed_size, embed_size)
)
self.dropout = nn.Dropout(dropout)
def forward(self, value, key, query, mask):
attention = self.attention(value, key, query, mask)
x = self.dropout(self.norm1(attention + query))
forward = self.feed_forward(x)
out = self.dropout(self.norm2(forward + x))
return out
编码器
编码器结构如下所示,Inputs经过Input Embedding 和Positional Encoding之后,通过多个Transformer块
代码实现
class Encoder(nn.Module):
def __init__(self,
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length
):
super(Encoder, self).__init__()
self.embed_size = embed_size
self.device = device
self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[
TransformerBlock(
embed_size,
heads,
dropout=dropout,
forward_expansion=forward_expansion
)
for _ in range(num_layers)]
)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
N, seq_lengh = x.shape
positions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)
out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
out = layer(out, out, out, mask)
return out
解码器块
解码器块结构如下图所示
代码实现
class DecoderBlock(nn.Module):
def __init__(self, embed_size, heads, forward_expansion, dropout, device):
super(DecoderBlock, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm = nn.LayerNorm(embed_size)
self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)
self.dropout = nn.Dropout(dropout)
def forward(self, x, value, key, src_mask, trg_mask):
attention = self.attention(x, x, x, trg_mask)
query = self.dropout(self.norm(attention + x))
out = self.transformer_block(value, key, query, src_mask)
return out
解码器
解码器块加上word embedding 和 positional embedding之后构成解码器
代码实现
class Decoder(nn.Module):
def __init__(self,
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length):
super(Decoder, self).__init__()
self.device = device
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
for _ in range(num_layers)]
)
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_out, src_mask, trg_mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))
for layer in self.layers:
x = layer(x, enc_out, enc_out, src_mask, trg_mask)
out = self.fc_out(x)
return out
整个Transformer
代码实现
class Transformer(nn.Module):
def __init__(self,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
trg_pad_idx,
embed_size=256,
num_layers=6,
forward_expansion=4,
heads=8,
dropout=0,
device="cuda",
max_length=100
):
super(Transformer, self).__init__()
self.encoder = Encoder(
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length
)
self.decoder = Decoder(
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length
)
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
def make_src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
#(N, 1, 1, src_len)
return src_mask.to(self.device)
def make_trg_mask(self, trg):
N, trg_len = trg.shape
trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
N, 1, trg_len, trg_len
)
return trg_mask.to(self.device)
def forward(self, src, trg):
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
out = self.decoder(trg, enc_src, src_mask, trg_mask)
return out
参考来源
[1] https://www.youtube.com/watch?v=U0s0f995w14
[2] https://github.com/aladdinpersson/Machine-Learning-Collection/blob/master/ML/Pytorch/more_advanced/transformer_from_scratch/transformer_from_scratch.py
[3] https://arxiv.org/abs/1706.03762
[4] https://www.youtube.com/watch?v=pkVwUVEHmfI
全部代码(可直接运行)
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (self.head_dim * heads == embed_size), "Embed size needs to be div by heads"
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads*self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0] # the number of training examples
value_len, key_len, query_len = values.shape[1], keys.shape[1], query.shape[1]
# Split embedding into self.heads pieces
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(queries)
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
# queries shape: (N, query_len, heads, heads_dim)
# keys shape: (N, key_len, heads, heads_dim)
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask==0, float("-1e20"))
#Fills elements of self tensor with value where mask is True
attention = torch.softmax(energy / (self.embed_size ** (1/2)), dim=3)
out = torch.einsum("nhql, nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads*self.head_dim
)
# attention shape: (N, heads, query_len, key_len)
# values shape: (N, value_len, heads, head_dim)
# after einsum (N, query_len, heads, head_dim) then flatten last two dimensions
out = self.fc_out(out)
return out
class TransformerBlock(nn.Module):
def __init__(self, embed_size, heads, dropout, forward_expansion):
super(TransformerBlock, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion*embed_size),
nn.ReLU(),
nn.Linear(forward_expansion*embed_size, embed_size)
)
self.dropout = nn.Dropout(dropout)
def forward(self, value, key, query, mask):
attention = self.attention(value, key, query, mask)
x = self.dropout(self.norm1(attention + query))
forward = self.feed_forward(x)
out = self.dropout(self.norm2(forward + x))
return out
class Encoder(nn.Module):
def __init__(self,
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length
):
super(Encoder, self).__init__()
self.embed_size = embed_size
self.device = device
self.word_embedding = nn.Embedding(src_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[
TransformerBlock(
embed_size,
heads,
dropout=dropout,
forward_expansion=forward_expansion
)
for _ in range(num_layers)]
)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
N, seq_lengh = x.shape
positions = torch.arange(0, seq_lengh).expand(N, seq_lengh).to(self.device)
out = self.dropout(self.word_embedding(x) + self.position_embedding(positions))
for layer in self.layers:
out = layer(out, out, out, mask)
return out
class DecoderBlock(nn.Module):
def __init__(self, embed_size, heads, forward_expansion, dropout, device):
super(DecoderBlock, self).__init__()
self.attention = SelfAttention(embed_size, heads)
self.norm = nn.LayerNorm(embed_size)
self.transformer_block = TransformerBlock(embed_size, heads, dropout, forward_expansion)
self.dropout = nn.Dropout(dropout)
def forward(self, x, value, key, src_mask, trg_mask):
attention = self.attention(x, x, x, trg_mask)
query = self.dropout(self.norm(attention + x))
out = self.transformer_block(value, key, query, src_mask)
return out
class Decoder(nn.Module):
def __init__(self,
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length):
super(Decoder, self).__init__()
self.device = device
self.word_embedding = nn.Embedding(trg_vocab_size, embed_size)
self.position_embedding = nn.Embedding(max_length, embed_size)
self.layers = nn.ModuleList(
[DecoderBlock(embed_size, heads, forward_expansion, dropout, device)
for _ in range(num_layers)]
)
self.fc_out = nn.Linear(embed_size, trg_vocab_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_out, src_mask, trg_mask):
N, seq_length = x.shape
positions = torch.arange(0, seq_length).expand(N, seq_length).to(self.device)
x = self.dropout((self.word_embedding(x) + self.position_embedding(positions)))
for layer in self.layers:
x = layer(x, enc_out, enc_out, src_mask, trg_mask)
out = self.fc_out(x)
return out
class Transformer(nn.Module):
def __init__(self,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
trg_pad_idx,
embed_size=256,
num_layers=6,
forward_expansion=4,
heads=8,
dropout=0,
device="cuda",
max_length=100
):
super(Transformer, self).__init__()
self.encoder = Encoder(
src_vocab_size,
embed_size,
num_layers,
heads,
device,
forward_expansion,
dropout,
max_length
)
self.decoder = Decoder(
trg_vocab_size,
embed_size,
num_layers,
heads,
forward_expansion,
dropout,
device,
max_length
)
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
def make_src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
#(N, 1, 1, src_len)
return src_mask.to(self.device)
def make_trg_mask(self, trg):
N, trg_len = trg.shape
trg_mask = torch.tril(torch.ones((trg_len, trg_len))).expand(
N, 1, trg_len, trg_len
)
return trg_mask.to(self.device)
def forward(self, src, trg):
src_mask = self.make_src_mask(src)
trg_mask = self.make_trg_mask(trg)
enc_src = self.encoder(src, src_mask)
out = self.decoder(trg, enc_src, src_mask, trg_mask)
return out
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
x = torch.tensor([[1, 5, 6, 4, 3, 9, 5, 2, 0], [1, 8, 7, 3, 4, 5, 6, 7, 2]]).to(
device
)
trg = torch.tensor([[1, 7, 4, 3, 5, 9, 2, 0], [1, 5, 6, 2, 4, 7, 6, 2]]).to(device)
src_pad_idx = 0
trg_pad_idx = 0
src_vocab_size = 10
trg_vocab_size = 10
model = Transformer(src_vocab_size, trg_vocab_size, src_pad_idx, trg_pad_idx, device=device).to(device)
out = model(x, trg[:, :-1])
print(out.shape)