完全背包理论基础 C++力扣题目518--零钱兑换II

动态规划:完全背包理论基础

本题力扣上没有原题,大家可以去卡码网第52题 (opens new window)

#思路

#完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

关于01背包我如下两篇已经进行深入分析了:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

首先再回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中也做了讲解。

dp状态图如下:

动态规划-完全背包

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

动态规划-完全背包1

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

动态规划-完全背包2

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

先遍历背包在遍历物品,代码如下:

// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
    cout << endl;
}

完整的C++测试代码如下:

// 先遍历物品,在遍历背包
void test_CompletePack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;
    vector<int> dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_CompletePack();
}


// 先遍历背包,再遍历物品
void test_CompletePack() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    vector<int> dp(bagWeight + 1, 0);

    for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
        for(int i = 0; i < weight.size(); i++) { // 遍历物品
            if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_CompletePack();
}

本题力扣上没有原题,大家可以去卡码网第52题 (opens new window)去练习,题意是一样的,C++代码如下:

#include <iostream>
#include <vector>
using namespace std;

// 先遍历背包,再遍历物品
void test_CompletePack(vector<int> weight, vector<int> value, int bagWeight) {

    vector<int> dp(bagWeight + 1, 0);

    for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量
        for(int i = 0; i < weight.size(); i++) { // 遍历物品
            if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    int N, V;
    cin >> N >> V;
    vector<int> weight;
    vector<int> value;
    for (int i = 0; i < N; i++) {
        int w;
        int v;
        cin >> w >> v;
        weight.push_back(w);
        value.push_back(v);
    }
    test_CompletePack(weight, value, V);
    return 0;
}

#总结

细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!

但如果题目稍稍有点变化,就会体现在遍历顺序上。

如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。

这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!

别急,下一篇就是了!

最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。

 

518.零钱兑换II

力扣题目链接(opens new window)

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

#思路

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

回归本题,动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些! (opens new window)中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品
    for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量
        dp[j] += dp[j - coins[i]];
    }
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量
    for (int i = 0; i < coins.size(); i++) { // 遍历物品
        if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];
    }
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

518.零钱兑换II

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i < coins.size(); i++) { // 遍历物品
            for (int j = coins[i]; j <= amount; j++) { // 遍历背包
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

  • 时间复杂度: O(mn),其中 m 是amount,n 是 coins 的长度
  • 空间复杂度: O(m)

是不是发现代码如此精简

#总结

本题的递推公式,其实我们在494. 目标和 (opens new window)中就已经讲过了,而难点在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

可能说到排列数录友们已经有点懵了,后面Carl还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/374108.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

华为环网双机接入IPTV网络部署案例

环网双机接入IPTV网络部署案例 组网图形 图2 环网双机场景IPTV基本组网图 方案简介配置注意事项组网需求数据规划配置思路操作步骤配置文件 方案简介 随着IPTV业务的迅速发展&#xff0c;IPTV平台承载的用户也越来越多&#xff0c;用户对IPTV直播业务的可靠性要求越来越高。…

C++泛编程(4)

类模板高级&#xff08;1&#xff09; 1.类模板具体化部分具体化完全具体化 2.类模板与继承 1.类模板具体化 有了函数模板具体化的基础&#xff0c;学习类模板的具体化很简单。类模板具体化有两种方式&#xff0c;分别为部分具体化和完全具体化。假如有类模板&#xff1a; te…

ywtool inspect命令

一.巡检介绍 日巡检是通过定时任务每天凌晨2点30进行巡检周巡检时通过定时任务每周日的凌晨3点进行巡检日巡检内容: (1)系统信息检查(2)网络检查(3)CPU检查(4)内存检查(5)硬盘检查(6)服务检查(7)昨天登陆成功主机记录(8)JDK检查(9)NTP检查(10)syslog检查(11)SNMP检查(12)SSH检…

低代码与MES系统相结合

​低代码平台通常是指aPaaS平台&#xff0c;通过为开发者提供可视化的应用开发环境&#xff0c;降低或去除应用开发对原生代码编写的需求量&#xff0c;进而实现便捷构建应用程序的一种解决方案。 更加简单点的理解就是“拖拽&#xff01;搭建应用”。 一、低代码开发平台概述 …

使用 Python、Elasticsearch 和 Kibana 分析波士顿凯尔特人队

作者&#xff1a;来自 Jessica Garson 大约一年前&#xff0c;我经历了一段压力很大的时期&#xff0c;最后参加了一场篮球比赛。 在整个过程中&#xff0c;我可以以一种我以前无法做到的方式断开连接并找到焦点。 我加入的第一支球队是波士顿凯尔特人队。 波士顿凯尔特人队是…

【Web】小白也能看懂的BeginCTF个人wp(全)

纯萌新&#xff0c;贴出自己的wp&#xff0c;一起交流学习QWQ 目录 zupload zupload-pro zupload-pro-plus zupload-pro-plus-max zupload-pro-plus-max-ultra zupload-pro-plus-max-ultra-premium zupload-pro-revenge zupload-pro-plus-enhanced POPgadget sql教…

ant-design-vue表格嵌套子表格,实现子表格有数据才显示左侧加号图标

ant-design-vue表格嵌套子表格&#xff0c;实现子表格有数据才显示左侧加号图标 通过使用插槽的方式&#xff0c;以下为全部项目的代码&#xff0c;关键的代码就两块&#xff0c;看注释 <template><a-card><a-form class"kit_form" ref"formRef…

(已解决)vue+element-ui实现个人中心,仿照原神

差一个个人中心页面&#xff0c;看到了这个博主的个人中心&#xff0c;真的很不错 地址&#xff1a;vueelement仿原神实现好看的个人中心 最终效果&#xff1a;

15.1 项目实践_OA系统

15.1 项目实践_OA系统 1. 需求说明及环境准备1.1 需求说明1.2 环境准备1.3 开发模式_MVC架构模式2. 关键代码解析2.1 整合MyBatis1. 依赖2. 配置mybatis-config.xml3. Mybatis工具类2.2 RBAC2.3 用户登录1. 需求说明及环境准备 1.1 需求说明

RBAC的权限解决方案(思路)

RBAC全称&#xff1a;role based access control&#xff0c;基于角色的权限控制方案 核心思路&#xff1a;给角色分配功能权限&#xff0c;把角色分配给员工&#xff0c;那员工就自动拥有了角色下面的所有功能权限 菜单路由权限控制&#xff1a;不同角色的员工进入到系统中看到…

MySQL知识点总结(四)——MVCC

MySQL知识点总结&#xff08;四&#xff09;——MVCC 三个隐式字段row_idtrx_idroll_pointer undo logread viewMVCC与隔离级别的关系快照读和当前读 MVCC全称是Multi Version Concurrency Control&#xff0c;也就是多版本并发控制。它的作用是提高事务的并发度&#xff0c;通…

Axure 动态面板初使用 - 实现简单的Banner图轮播效果

实现简单的Banner图轮播效果 使用工具版本实现的效果步骤过程 使用工具版本 Axure 9 实现的效果 步骤过程 1、打开Axure工具&#xff0c;从元件库拖个动态面板到空白页&#xff1b; 2、给面板设置一个常用的banner尺寸&#xff0c;举个栗子&#xff1a;343151(移动端我常用…

SpringBoot:多环境配置

多环境配置demo代码&#xff1a;点击查看LearnSpringBoot02 点击查看更多的SpringBoot教程 方式一、多个properties文件配置 注意&#xff1a;创建properties文件,命名规则&#xff1a;application-&#xff08;环境名称&#xff09; 示例&#xff1a;application-dev.proper…

【CSS】什么是BFC?BFC有什么作用?

【CSS】什么是BFC&#xff1f;BFC有什么作用&#xff1f; 一、BFC概念二、触发BFC三、BFC特性即应用场景1、解决margin塌陷的问题2、避免外边距margin重叠&#xff08;margin合并&#xff09;3、清除浮动4、阻止元素被浮动元素覆盖 一、BFC概念 BFC(block formatting context)…

俏美韵实现多场景养身 树立健康养身新要义

近年来&#xff0c;“年轻”在现代社会被符号化与视觉化&#xff0c;老年化的肉身迹象出现让“不甘衰老”的青年们困扰不安。然而这代年轻人的养身模式堪称为矛盾的集合体&#xff0c;他们挣扎在放纵与自律之间。一方面&#xff0c;他们想尽办法来创造各式各样的身体“保养”方…

阿里集团基于 Fluid+JindoCache 加速大模型训练的实践

作者&#xff1a;王涛(扬礼) 陈裘凯(求索) 徐之浩(东伝) 一、背景 时间步入了 2024 年&#xff0c;新的技术趋势&#xff0c;如大模型/AIGC/多模态等技术&#xff0c;已经开始与实际业务相结合&#xff0c;并开始生产落地。这些新的技术趋势不仅提高了算力的需求&#xff0c;也…

23、数据结构/查找相关练习20240205

一、请编程实现哈希表的创建存储数组{12,24,234,234,23,234,23},输入key查找的值&#xff0c;实现查找功能。 代码&#xff1a; #include<stdlib.h> #include<string.h> #include<stdio.h> #include<math.h> typedef struct Node {int data;struct n…

VXLAN:虚拟化网络的强大引擎

1.什么是VXLAN VXLAN&#xff08;Virtual eXtensible Local Area Network&#xff0c;虚拟扩展局域网&#xff09;&#xff0c;是由IETF定义的NVO3&#xff08;Network Virtualization over Layer 3&#xff09;标准技术之一&#xff0c;是对传统VLAN协议的一种扩展。VXLAN的特…

mysql 多数据源

依赖 <dependencies><!--mysql连接--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><scope>runtime</scope></dependency><!--多数据源--><dependency><g…

第3节、电机定速转动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍用定时器定时的方式&#xff0c;精准控制脉冲时间&#xff0c;从而控制步进电机速度。 一、计算过程 电机每一步的角速度等于走这一步所花费的时间&#xff0c;走一步角度等于步距角&#xff…