算法学习——LeetCode力扣链表篇2

算法学习——LeetCode力扣链表篇2

在这里插入图片描述

24. 两两交换链表中的节点

24. 两两交换链表中的节点 - 力扣(LeetCode)

描述

给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。

示例

示例 1:

在这里插入图片描述

输入:head = [1,2,3,4]
输出:[2,1,4,3]

示例 2:

输入:head = []
输出:[]

示例 3:

输入:head = [1]
输出:[1]

提示

链表中节点的数目在范围 [0, 100] 内
0 <= Node.val <= 100

代码解析

自己写版本

原理为两个交换,交换参数为pre和cur。
交换成功后,连接pre的前一个pre2和cur的后一个aft。

#include <iostream>
#include <vector>
#include<algorithm> 

using namespace std;




struct ListNode {
  int val;
  ListNode *next;
  ListNode() : val(0), next(nullptr) {}
  ListNode(int x) : val(x), next(nullptr) {}
  ListNode(int x, ListNode *next) : val(x), next(next) {}
};
 

class Solution {
public:
   	ListNode* swapPairs(ListNode* head) {
        ListNode* pre, * cur, *temp ,*aft,*pre2,*head_test;
		//链表长度为0或者为1
        if (head == nullptr || head->next == nullptr)return head;

        ListNode test(0,nullptr);
        head_test = head->next;
        pre = head;
        pre2 = &test;
        cur = pre->next;
       
       //链表长度大于2以上
        while (cur)
        {
           
            aft = cur->next;
            if (pre != nullptr|| cur != nullptr)
            {
                temp = cur->next;
                cur->next = pre;
                pre->next = temp;
                pre2->next = cur;
            }
            else break;
            pre2 = pre;
            pre = aft;
            
            if (pre != nullptr)cur = pre->next;
            else break;
        }
        return head_test;
    }
};

int main()
{
    vector<int> head = { 1,2};

    ListNode* head_test = new ListNode(0);
    ListNode* test  , *cur = head_test;
    Solution  a;

    for (int i = 0; i < head.size(); i++)
    {
       
       ListNode* temp = new ListNode(head[i]);
       cur->next = temp;
       cur = cur->next;
      
    }
    cur->next = nullptr;

    cur = head_test;
    cout << "cur list" << endl;
    while (cur->next != nullptr)
    {
        cout << cur->val << ' ';
        cur = cur->next;
    }
    cout << cur->val << endl;


    test = a.swapPairs(head_test->next);

    while (test->next != nullptr)
    {
        cout << test->val << ' ';
        test = test->next;
    }
    cout << test->val << ' ';
	return 0;

}

卡尔版本
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* swapPairs(ListNode* head) {
        if(head == nullptr || head->next == nullptr) return head;
        ListNode* headReal = new ListNode(0);
        headReal->next = head;
        
        ListNode* tmpPre = headReal;
        ListNode* tmp1 = tmpPre->next;
        ListNode* tmp2 = tmpPre->next->next;
        ListNode* tmpNext = tmpPre->next->next->next;

        while(tmpPre != nullptr && tmp1 != nullptr && tmp2 != nullptr  )
        {
            tmpPre->next = tmp2;
            tmp2->next = tmp1;
            tmp1->next = tmpNext;

            tmpPre = tmpPre->next->next;
            tmp1 = tmpPre->next;
            if( tmp1 == nullptr) break;
            tmp2 = tmpPre->next->next;
            if( tmp2 == nullptr) break;
            tmpNext = tmpPre->next->next->next;

        }


        return headReal->next;
    }
};

19. 删除链表的倒数第 N 个结点

19. 删除链表的倒数第 N 个结点 - 力扣(LeetCode)

描述

给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。

示例

示例 1:

在这里插入图片描述

输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]

示例 2:

输入:head = [1], n = 1
输出:[]

示例 3:

输入:head = [1,2], n = 1
输出:[1]

提示

  1. 链表中结点的数目为 sz
  2. 1 <= sz <= 30
  3. 0 <= Node.val <= 100
  4. 1 <= n <= sz

进阶:你能尝试使用一趟扫描实现吗?

代码解析

自己写暴力版本
#include <iostream>
#include <vector>
#include<algorithm> 

using namespace std;

 struct ListNode {
   int val;
   ListNode *next;
   ListNode() : val(0), next(nullptr) {}
   ListNode(int x) : val(x), next(nullptr) {}
   ListNode(int x, ListNode *next) : val(x), next(next) {}
 };
 
  class Solution {
  public:
      ListNode* removeNthFromEnd(ListNode* head, int n) {
          int length = 0;
          ListNode* temp1 = head , *temp2;

          while (temp1!=nullptr)
          {
              temp1 = temp1->next;
              length++;
          }
            
          if (n == length)
          {
              temp2 = head;
              head = head->next;
              delete temp2;
          }
          else
          {
              temp1 = head;
              for (int i = 0; i < length - n - 1; i++ )
              {
                  temp1 = temp1->next;
              }
              temp1->next = temp1->next->next;
          }
          return head;
      }
  };



int main()
{
    vector<int> head = { 1,2 ,3,4 ,5};

    ListNode* head_test = new ListNode(0);
    ListNode* test  , *cur = head_test;
    Solution  a;

    for (int i = 0; i < head.size(); i++)
    {
       
       ListNode* temp = new ListNode(head[i]);
       cur->next = temp;
       cur = cur->next;
      
    }
    cur->next = nullptr;

    cur = head_test;
    cout << "cur list" << endl;
    while (cur->next != nullptr)
    {
        cout << cur->val << ' ';
        cur = cur->next;
    }
    cout << cur->val << endl;


    test = a.removeNthFromEnd(head_test->next,2);

    while (test->next != nullptr)
    {
        cout << test->val << ' ';
        test = test->next;
    }
    cout << test->val << ' ';
	return 0;

}

双指针
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* removeNthFromEnd(ListNode* head, int n) {
        int sum_node = 0;
        ListNode *real_head = new ListNode(0,head);
        ListNode *tmp = real_head;
        
        while(tmp != nullptr)
        {
            sum_node++;
            tmp = tmp->next;
        }
       
        sum_node = sum_node - n -1;
        tmp = real_head;
        while(sum_node--) tmp = tmp->next;

        if( tmp->next != nullptr && tmp->next->next != nullptr)
        {
            tmp->next = tmp->next->next;
        }else tmp->next = nullptr;

        return real_head->next;
    }
};

面试题 02.07. 链表相交

面试题 02.07. 链表相交 - 力扣(LeetCode)

描述

给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。

图示两个链表在节点 c1 开始相交:
在这里插入图片描述

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

示例 1:

在这里插入图片描述

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at ‘8’
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:

在这里插入图片描述

输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at ‘2’
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:

在这里插入图片描述

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

提示

  • listA 中节点数目为 m
  • listB 中节点数目为 n
  • 0 <= m, n <= 3 * 104
  • 1 <= Node.val <= 105
  • 0 <= skipA <= m
  • 0 <= skipB <= n
  • 如果 listA 和 listB 没有交点,intersectVal 为 0
  • 如果 listA 和 listB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]

进阶

你能否设计一个时间复杂度 O(n) 、仅用 O(1) 内存的解决方案?

代码解析

暴力循环
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {

        ListNode *dummy_a = new ListNode(0,NULL);
        ListNode *dummy_b = new ListNode(0,NULL);

        ListNode *temp, *tempA , *tempB;

        int flag = 0;
        dummy_a->next = headA;
        dummy_b->next = headB;
        tempA = dummy_a;
        tempB = dummy_b;

        if(headA == headB) return headA;

        while(tempA->next != NULL)
        {
            while(tempB->next != NULL)
            {
                if(tempA == tempB)
                {
                    return tempA; 
                }
                tempB = tempB->next;
            }
           
            tempB = dummy_b;
            tempA = tempA->next;
        }

        while(dummy_b)
        {
            if(tempA == dummy_b)return tempA;
            dummy_b = dummy_b->next;
        }
         while(dummy_a)
        {
            if(tempB == dummy_a)return tempB;
            dummy_a = dummy_a->next;
        }
        return NULL;

    }
};

对其相同部分

先计算两个链表的长度,因为后面完全一致,让长的链表先向后移动到和短链表相同长度。再依次查找是否完全一致的节点。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        int length_A = 0 , length_B = 0 ,diff=0 ;
        ListNode *cur_A = headA , *cur_B = headB;
        ListNode *dummy_a = new ListNode(0);
        ListNode *dummy_b = new ListNode(0);

        dummy_a->next = headA;
        dummy_b->next = headB;

        while(dummy_a->next != NULL)
        {
            length_A++;
            dummy_a = dummy_a->next;
        }

        while(dummy_b->next != NULL)
        {
            length_B++;
            dummy_b = dummy_b->next;
        }
       
        if(length_A >= length_B)
        {
            for(int i =0;i< length_A-length_B;i++)
            {
                cur_A = cur_A->next;
            }
        }else
        {
            for(int i =0;i< length_B-length_A;i++)
            {
                cur_B = cur_B->next;
            }
        }

        while(cur_A != cur_B)
        {
            cur_A = cur_A->next;
            cur_B = cur_B->next;
        }
        return cur_A;
    }
};

循环法
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        ListNode* tmpA = headA;
        ListNode* tmpB = headB;

        while(tmpA != tmpB)
        {
            tmpA = (tmpA == nullptr ? headB : tmpA->next);
            tmpB = (tmpB == nullptr ? headA : tmpB->next);
        }
        return tmpA;
    }
};

142. 环形链表 II

142. 环形链表 II - 力扣(LeetCode)

描述

给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。

如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。

不允许修改 链表。

示例

示例 1:

在这里插入图片描述

输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。

示例 2:

在这里插入图片描述

输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。

示例 3:

在这里插入图片描述

输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。

提示

链表中节点的数目范围在范围 [0, 104] 内
-105 <= Node.val <= 105
pos 的值为 -1 或者链表中的一个有效索引

进阶

你是否可以使用 O(1) 空间解决此题?

代码解析

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        ListNode *left = head;
        ListNode *right = head;
        
        while(right != nullptr && right->next != nullptr)
        {
            right = right->next->next;
            left = left->next;
            if(right == left)
            {
                ListNode *indnx1 = head;
                ListNode *indnx2 = right;
                while(1)
                {
                    if(indnx1 == indnx2) return indnx1;
                    indnx1 = indnx1->next;
                    indnx2 = indnx2->next;
                }
            }   
        }
        return nullptr;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/373460.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

零售新业态,让老牧区焕发新生命

敦煌老马一声魔性“浇给”勾起了无数人对羊肉的食欲&#xff0c;而当大家集体涌入餐厅或者在网上下单&#xff0c;都想要尝一尝网红同款的时候&#xff0c;可能并没有想过这样一个问题——为什么在今天&#xff0c;即便是远离牧区的现代大城市&#xff0c;草原羊肉却一样能触手…

12. UE5 RPG使用GameplayEffect修改角色属性(三)

书接 11. UE5 RPG使用GameplayEffect修改角色属性&#xff08;二&#xff09; 前面&#xff0c;介绍了GameplayEffect的Instant和Duration的使用&#xff0c;这一篇主要介绍一下无限制时间类型的infinite的使用方式。 无限时间限制模式下&#xff0c;如果你的周期时间&#xff…

tee漏洞学习-翻译-2:探索 Qualcomm TrustZone的实现

原文&#xff1a;http://bits-please.blogspot.com/2015/08/exploring-qualcomms-trustzone.html 获取 TrustZone image 从两个不同的位置提取image 从手机设备本身从google factory image 已经root的Nexus 5设备&#xff0c;image存储在eMMC芯片上&#xff0c;并且eMMC芯片…

[软件工具]文档页数统计工具软件pdf统计页数word统计页数ppt统计页数图文打印店快速报价工具

文档页数统计工具软件——打印方面好帮手 在信息化时代&#xff0c;文档已成为我们工作、学习、生活中不可或缺的一部分。无论是学术论文、商业报告&#xff0c;还是个人日记&#xff0c;都需要我们对其进行有效的管理。而在这个过程中&#xff0c;文档页数统计工具软件就显得…

读千脑智能笔记05_千脑智能理论

1. 现有的新皮质理论 1.1. 最普遍的看法是新皮质就像一个流程图 1.2. 特征层次理论 1.2.1. 该理论最大的弊端在于认为视觉是个静止的过程&#xff0c;就像拍一张照片一样&#xff0c;但事实并非如此 1.2.1.1. 眼睛每秒会快速转…

LoRA:语言模型微调的计算资源优化策略

编者按&#xff1a;随着数据量和计算能力的增加&#xff0c;大模型的参数量也在不断增加&#xff0c;同时进行大模型微调的成本也变得越来越高。全参数微调需要大量的计算资源和时间&#xff0c;且在进行切换下游任务时代价高昂。 本文作者介绍了一种新方法 LoRA&#xff0c;可…

docker程序镜像的制作

目录 一、每种资源的预安装&#xff08;基础&#xff09; 安装 nginx安装 redis 二、dockerfile文件制作&#xff08;基础&#xff09; 打包 redis 镜像 创建镜像制作空间制作dockerfile 打包 nginx 镜像 三、创建组合镜像&#xff08;方式一&#xff09; 生成centos容器并…

3.0 Zookeeper linux 服务端集群搭建步骤

本章节将示范三台 zookeeper 服务端集群搭建步骤。 所需准备工作&#xff0c;创建三台虚拟机环境并安装好 java 开发工具包 JDK&#xff0c;可以使用 VM 或者 vagrantvirtualbox 搭建 centos/ubuntu 环境&#xff0c;本案例基于宿主机 windows10 系统同时使用 vagrantvirtualb…

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于CNN-GRU-AdaBo…

Docker进阶篇-CIG重量级监控系统

一、简介 通过docker stats命令可以很方便的查看当前宿主机上所有容器的CPU、内存、网络流量等数 据&#xff0c;可以满足一些小型应用。 但是docker stats统计结果只能是当前宿主机的全部容器&#xff0c;数据资料是实时的&#xff0c;没有地方存储、 没有健康指标过线预警…

二叉树的详解

二叉树 【本节目标】 掌握树的基本概念掌握二叉树概念及特性掌握二叉树的基本操作完成二叉树相关的面试题练习 树型结构&#xff08;了解&#xff09; 概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。…

Redis核心技术与实战【学习笔记】 - 24.Redis 数据分片方案选择:Codis 和 Redis Cluster

简述 Redis 的切片集群使用多个实例保存数据&#xff0c;能很好的应对大数据量的场景。在《4.Redis 切片集群》中&#xff0c;介绍了 Redis 官方提供的切片集群方法 Redis Cluster。本章&#xff0c;再来学习下&#xff0c;在 Redis Cluster 方案正式发布前&#xff0c;业界广…

CodeMeter强化了ETM WinCC 开放架构平台的许可与安全保护

在面对日益复杂的网络安全威胁时&#xff0c;ETM professional control采取了前瞻性的措施&#xff0c;选择了业界领先的威步CodeMeter技术&#xff0c;以保护其标志性的WinCC开放架构平台。这一选择不仅体现了ETM对安全的高度重视&#xff0c;也标志着其在保障关键基础设施运营…

Jmeter 01 -概述线程组

1、Jmeter:概述 1.1 是什么&#xff1f; Jmeter是Apache公司使用Java 开发的一款测试工具 1.2 为什么&#xff1f; 高效、功能强大 模拟一些高并发或多次循环等特殊场景 1.3 怎么用&#xff1f; 下载安装 1、下载jmeter&#xff0c;解压缩2、安装Java环境&#xff08;jmet…

基于OpenCV灰度图像转GCode的螺旋扫描实现

基于OpenCV灰度图像转GCode的螺旋扫描实现 引言激光雕刻简介OpenCV简介实现步骤 1.导入必要的库2. 读取灰度图像3. 图像预处理4. 生成GCode5. 保存生成的GCode6. 灰度图像螺旋扫描代码示例 总结 系列文章 ⭐深入理解G0和G1指令&#xff1a;C中的实现与激光雕刻应用⭐基于二值…

5-3、S曲线生成器【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】&#xff0c;查看本系列全部文章 摘要&#xff1a;本节介绍步进电机S曲线生成器的计算以及使用 一.计算原理 根据上一节内容&#xff0c;已经计算了一条任意S曲线的函数。在步进电机S曲线加减速的控制中&#xff0c;需要的S曲线如图1所示&#xff0c;横…

React 实现表单组件

表单是html的基础元素&#xff0c;接下来我会用React实现一个表单组件。支持包括输入状态管理&#xff0c;表单验证&#xff0c;错误信息展示&#xff0c;表单提交&#xff0c;动态表单元素等功能。 数据状态 表单元素的输入状态管理&#xff0c;可以基于react state 实现。 …

09_树莓派_树莓派外设板_GPIO_按键的中断与消抖

目录 1.树莓派外设集成板总体介绍 2.第一部分 按键矩阵 GPIO_按键与中断 3.实现效果 1.树莓派外设集成板总体介绍 1&#xff09;前言&#xff1a;这是一块为了验证树莓派【兼容树莓派多个型号】的40pins的外设接口的外接板&#xff0c;告别复杂的面包板外设搭建。【欢迎各位…

【Iceberg学习四】Evolution和Maintenance在Iceberg的实现

Evolution Iceberg 支持就底表演化。您可以像 SQL 一样演化表结构——即使是嵌套结构——或者当数据量变化时改变分区布局。Iceberg 不需要像重写表数据或迁移到新表这样耗费资源的操作。 例如&#xff0c;Hive 表的分区布局无法更改&#xff0c;因此从每日分区布局变更到每小…

Node.js+Express+Mysql服务添加环境变量

1、使用dotenv插件 1&#xff09;安装插件&#xff1a;npm install dotenv-cli --save-dev 2&#xff09;在项目根目录下添加对应的 .env 配置文件&#xff1b; // .env配置文件内容 MODEdevelopment, BASE_URLhttp://127.0.0.1:80813) 在启动命令中设置对应的加载文件&#…