前言
谁言别后终无悔
寒月清宵绮梦回
深知身在情长在
前尘不共彩云飞
整体评价
T3是道模拟题,但是感觉题意有些晦涩,T4一眼Z函数,当然StringHash更通用些。
新年快乐, _.
T1. 将单词恢复初始状态所需的最短时间 I
思路: 模拟
就是前缀和为0的次数
class Solution {
public int returnToBoundaryCount(int[] nums) {
int acc = 0;
int res = 0;
for (int v: nums) {
acc += v;
if (acc == 0) res++;
}
return res;
}
}
T2. 将单词恢复初始状态所需的最短时间 I
和T4一起讲
T3. 找出网格的区域平均强度
思路: 模拟
感觉题意有些晦涩,窗口比较小,可以莽些。
如果窗口大小比较大,就需要
二维前缀和 + 二维差分 二维前缀和+二维差分 二维前缀和+二维差分
class Solution {
int[][] dirs = new int[][] {
{-1, 0}, {1, 0}, {0, -1}, {0, 1}
};
int[] evaluate(int[][] image, int ty, int tx, int limit) {
int res = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
for (int k = 0; k < 4; k++) {
int dy = i + dirs[k][0];
int dx = j + dirs[k][1];
if (dy >= 0 && dy < 3 && dx >= 0 && dx < 3) {
int dist = Math.abs(image[ty+i][tx+j] - image[ty+dy][tx+dx]);
if (dist > limit) {
return new int[] {0, 0};
}
}
}
res += image[ty + i][tx + j];
}
}
return new int[] {1, res / 9};
}
public int[][] resultGrid(int[][] image, int threshold) {
int h = image.length, w = image[0].length;
int[][] sum = new int[h][w];
int[][] cnt = new int[h][w];
// 预处理,枚举左上角
for (int i = 0; i < h - 2; i++) {
for (int j = 0; j < w - 2; j++) {
int[] res = evaluate(image, i, j, threshold);
for (int s = 0; s < 3; s++) {
for (int t = 0; t < 3; t++) {
sum[s+i][t+j] += res[1];
cnt[s+i][t+j] += res[0];
}
}
}
}
// 统计值
int[][] ans = new int[h][w];
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (cnt[i][j] == 0) {
ans[i][j] = image[i][j];
} else {
ans[i][j] = sum[i][j] / cnt[i][j];
}
}
}
return ans;
}
}
T4. 将单词恢复初始状态所需的最短时间 II
思路: Z函数/StringHash
属于思维题的范畴
S [ i : n ] = = S [ 0 : n − i ] ,那么该 i 就是满足要求的点 S[i:n] == S[0:n-i],那么该i就是满足要求的点 S[i:n]==S[0:n−i],那么该i就是满足要求的点
因为字符串S很大,所以利用StringHash,可以 O ( N ) O(N) O(N)判定。
当然也可以转换下思维
S [ i : n ] = = S [ 0 : n − i ] 本质就是求 S [ i : n ] 和 S [ 0 : n ] 的最长前缀长度 S[i:n] == S[0:n-i] 本质就是求 S[i:n] 和 S[0:n]的最长前缀长度 S[i:n]==S[0:n−i]本质就是求S[i:n]和S[0:n]的最长前缀长度
这个就是属于Z函数的核心概念了。
- Z函数
class Solution {
// z函数模板, https://oi-wiki.org/string/z-func/
static int[] zFunction(String a) {
char[] s = a.toCharArray();
int n = s.length;
int[] z = new int[n];
z[0] = n;
for (int i = 1, l = 0, r = 0; i < n; ++i) {
if (i <= r && z[i - l] < r - i + 1) {
z[i] = z[i - l];
} else {
z[i] = Math.max(0, r - i + 1);
while (i + z[i] < n && s[z[i]] == s[i + z[i]]) ++z[i];
}
if (i + z[i] - 1 > r) {
l = i;
r = i + z[i] - 1;
}
}
return z;
}
public int minimumTimeToInitialState(String word, int k) {
int n = word.length();
int[] arr = zFunction(word);
for (int i = k; i < n; i += k) {
if (arr[i] == n - i) {
return i / k;
}
}
return (n + k - 1) / k;
}
}
- StringHash
class Solution {
static
class StringHash {
char[] str;
long p, mod;
int n;
long[] pre; // hash前缀和
long[] pow; // p的幂次
public StringHash(String s, int p, long mod) {
this.str = s.toCharArray();
this.p = p;
this.mod = mod;
this.n = str.length;
pre = new long[n + 1];
pow = new long[n + 1];
pow[0] = 1;
for (int i = 1; i <= n; i++) {
pow[i] = pow[i - 1] * p % mod;
}
for (int i = 0; i < str.length; i++) {
pre[i + 1] = (pre[i] * p % mod + str[i]) % mod;
}
}
long query(int l, int r) {
long res = pre[r + 1] - pre[l] * pow[r - l + 1] % mod;
return (res % mod + mod) % mod;
}
long rotate(int l) {
if (l < 0 || l >= str.length - 1) {
return query(0, str.length - 1);
} else {
long h1 = query(0, l);
long h2 = query(l + 1, str.length - 1);
return (h2 * pow[l + 1] % mod + h1) % mod;
}
}
static long evaluate(String s, int p, long mod) {
long h = 0;
for (char c: s.toCharArray()) {
h = (h * p % mod + c) % mod;
}
return h;
}
}
public int minimumTimeToInitialState(String word, int k) {
int p1 = 13, p2 = 17;
long mod = (long)1e9 + 7;
StringHash h1 = new StringHash(word, p1, mod);
StringHash h2 = new StringHash(word, p2, mod);
int res = 1;
int n = word.length();
for (int i = k; i < n; i += k) {
int d = n - i;
if (h1.query(i, n - 1) == h1.query(0, d - 1)
&& h2.query(i, n - 1) == h2.query(0, d - 1)) {
return res;
}
res++;
}
return res;
}
}