高斯消去法 | LU分解 | PA=LU分解(MatLab)

一、问题描述

利用高斯消去法,LU 分解及PA=LU 分解求解非线性方程组。

二、实验目的

掌握高斯消去法、LU 分解、PA=LU 分解的算法原理;编写代码实现利用高斯消去法、LU 分解、PA=LU 分解来求解线性方程组。

三、实验内容及要求

1. 利用顺序高斯消去法求解如下方程组。

请添加图片描述

(注意将顺序高斯消去法封装为一个函数,函数名Gauss,该函数对应的文件同样命名为Gauss)。

function x = Gauss(A, b)
    n = length(b);
    for k = 1:n-1
        for i = k+1:n
            factor = A(i,k) / A(k,k);
            A(i,k+1:n) = A(i,k+1:n) - factor * A(k,k+1:n);
            b(i) = b(i) - factor * b(k);
        end
    end
    
    x = zeros(n, 1);
    x(n) = b(n) / A(n,n);
    for i = n-1:-1:1
        x(i) = (b(i) - A(i,i+1:n) * x(i+1:n)) / A(i,i);
    end
end

% 使用例子
A = [2 -2 -1; 4 1 -2; -2 1 -1];
b = [-2; 1; -3];
x = Gauss(A, b);
disp(x);

2. 对1 中的线性方程组,利用LU 分解进行求解,并输出L 和U。

(注意将本部分代码封装为一个函数,函数名LU,该函数对应的文件同样命名为LU)。

function [L, U] = LU(A)
    [n,~] = size(A);
    L = eye(n);
    U = A;
    for k = 1:n-1
        for i = k+1:n
            factor = U(i,k) / U(k,k);
            L(i,k) = factor;
            U(i,k:n) = U(i,k:n) - factor * U(k,k:n);
        end
    end
end

% 使用例子
A = [2 -2 -1; 4 1 -2; -2 1 -1];
[L, U] = LU(A);
disp(L);
disp(U);

3. 对1 中的线性方程组,利用PA=LU 分解进行求解,并输出P、L 和U。

(注意将本部分代码封装为一个函数,函数名PLU,该函数对应的文件同样命名为PLU)。

function [P, L, U] = PLU(A)
    [n,~] = size(A);
    P = eye(n);
    L = zeros(n);
    U = A;
	
    for k = 1:n-1
        [~, maxindex] = max(abs(U(k:n,k)));
        maxindex = maxindex + k - 1;
        
        U([k,maxindex],:) = U([maxindex,k],:);
        L([k,maxindex],1:k-1) = L([maxindex,k],1:k-1);
        P([k,maxindex],:) = P([maxindex,k],:);
        
        for i = k+1:n
            factor = U(i,k) / U(k,k);
            L(i,k) = factor;
            U(i,k:n) = U(i,k:n) - factor * U(k,k:n);
        end
    end
    L = L + eye(n);
end

% 使用例子
A = [2 -2 -1; 4 1 -2; -2 1 -1];
[P, L, U] = PLU(A);
disp(P);
disp(L);
disp(U);

四、算法原理

1. 给出高斯消去法、LU 分解、PA=LU 分解的算法原理

  • 高斯消去法
    高斯消去法是一种用于解线性方程组的算法,它的目标是将给定的系数矩阵转化为上三角矩阵(或更进一步转化为对角矩阵),这样可以直接使用回代法求解未知数。

    步骤

    1. 选取主元(通常是当前列下的最大绝对值元素)。
    2. 使用主元所在的行减去其他行,从而消去该列下主元以下的所有元素。
    3. 对下一个列重复以上步骤,直到整个矩阵成为上三角形态。
    4. 使用回代法求解未知数。
  • LU 分解
    LU分解是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的过程。这样原方程组Ax=b变为LUx=b,先解Ly=b得到y,再解Ux=y得到x。

    步骤

    1. 从第一行开始,将A的当前行元素存储在U的相应位置,将除对角线元素外的当前列元素存储在L的相应位置。
    2. 使用L的当前列元素与U的当前行元素更新A的剩余部分。
    3. 对于下一个列重复上述步骤。
  • PA=LU 分解
    有时直接的LU分解不可能或者数值上不稳定,这时可以通过行交换获得稳定性。PA=LU分解将A分解为一个置换矩阵P、一个下三角矩阵L和一个上三角矩阵U。

    步骤

    1. 选择一个主元并进行必要的行交换。
    2. 按照LU分解的方法更新L和U的元素。
    3. 对下一个列重复以上步骤。

2. 分别给出高斯消去法、LU 分解消去和回代过程的耗费的计算量。

  • 高斯消去法
    消去过程的计算量大约为(2/3)n3,而回代过程为n2。所以总的计算量大约是O(n^3)。

  • LU 分解
    LU分解的计算量和高斯消去法类似,主要来自于消去过程,大约为(2/3)n3。回代过程是O(n2),所以总的计算量仍然是O(n^3)。

  • PA=LU 分解
    PA=LU分解的计算量和LU分解相似,因为增加的主要是行交换操作,这不会显著增加计算量。所以总的计算量仍然是O(n^3)。

五、测试数据及结果

  1. 给出算法输出的方程组的解。
    请添加图片描述

  2. 给出算法输出的方程组的解及L 和U。
    请添加图片描述

  3. 给出算法输出的方程组的解及P、L 和U。
    请添加图片描述

六、总结与思考

  1. 知识点的理解

    通过本次MATLAB实验,我深化了对线性代数中几个关键算法的理解:高斯消去法、LU分解和PA=LU分解。这些算法是解线性方程组的基石,并且在各种应用领域中都有广泛的使用。

  2. 代码实现的技巧

    • 使用MATLAB进行矩阵操作相对简单。例如,我们可以轻松地进行矩阵乘法、提取子矩阵和矩阵分解。
    • 通过封装代码为函数,可以使整体代码结构更清晰、模块化,并增强代码的可读性和重用性。
    • 适当的注释和文档对于理解和后期修改代码非常重要。

思考

  1. 算法的应用

    虽然这三种算法在解决线性方程组方面很有用,但它们在处理大型矩阵或具有特定结构的矩阵时可能并不是最优的。例如,对于稀疏矩阵或对称正定矩阵,可能存在更高效的算法。考虑不同的问题背景和矩阵特点来选择合适的算法是很重要的。

  2. 数值稳定性

    实验中,我们简单地实现了上述算法,但在实际应用中,数值稳定性是一个需要考虑的重要问题。特别是在高斯消去法中,如果不适当地选择主元,可能会导致数值不稳定。这就是为什么PA=LU分解(带有行交换)在某些情况下更受欢迎。

  3. 优化与进一步学习

    MATLAB提供了一系列的内置函数和工具箱,例如lu函数,可以直接进行LU分解。通过比较我们自己的实现和MATLAB的内置函数,我们可以进一步了解性能和数值稳定性的问题,并从中学习。

综上,本次MATLAB实验不仅加深了我计算方法的理解,而且让我认识到在实际应用中考虑算法的数值稳定性和选择最适合的算法的重要性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/370977.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计社区居民服务管理系统SSM

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: vue mybatis Maven mysql5.7或8.0等等组成,B…

Redis——SpringBoot整合Redis实战

1、基本配置 1.1、引入依赖 首先&#xff0c;建立Maven项目&#xff0c;在Maven项目中引入pom.xml文件&#xff1a; <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> &l…

HTML5和CSS3强化知识总结

HTML5的新特性 HTML5的新增特性主要是针对于以前的不足&#xff0c;增一些新的标签、新的表单和新的表单属性等。这些新特性都有兼容性问题&#xff0c;基本是IE9以上版本的浏览器才支持&#xff0c;如果不考虑兼容性问题&#xff0c;可以大量使用这些新特性。 HTML5新增的语义…

linux实时调度

面对陌生的知识体系&#xff0c;应该从什么角度来 简介 一、进程管理基本概念 在单处理器系统上&#xff0c;在给定时刻只有一个程序可以运行&#xff0c;在多处理器系统上&#xff0c;可以真正并行运行的进程数据&#xff0c;取决于物理CPU的数目&#xff1b; 进程优先级 …

git 合并多条提交记录

我要合并多条提交记录&#xff08;合并前7条为一条&#xff09;&#xff0c;实现如下效果&#xff1a; 使用git rebase // 查看前10个commit git log -10 // 将7个commit压缩成一个commit&#xff1b;注意&#xff1a;vim编辑器 git rebase -i HEAD~4 // add已经跟踪的文件 g…

接口测试框架对比

公司计划系统的开展接口自动化测试&#xff0c;需要我这边调研一下主流的接口测试框架给后端测试&#xff08;主要测试接口&#xff09;的同事介绍一下每个框架的特定和使用方式。后端同事根据他们接口的特点提出一下需求&#xff0c;看哪个框架更适合我们。 需求 1、接口编写…

Linux 用户和权限

Linux 用户和权限 一、root 用户&#xff08;超级管理员&#xff09;1.su和exit命令2.sudo 命令3.为普通用户配置sudo认证 二、用户和用户组1.用户组管理2.用户管理3.getent 命令 三、查看权限控制信息1.认识权限控制信息 四、chmod命令五、chown命令 一、root 用户&#xff08…

怎样理解Vue单向数据流

在前端开发中&#xff0c;数据流是一个非常重要的概念。Vue.js作为一种流行的前端框架&#xff0c;采用了单向数据流的架构&#xff0c;旨在简化开发过程并提高应用的可维护性。本文将探讨Vue单向数据流的含义以及它的使用方法。 什么是单向数据流&#xff1f; 在Vue中&#…

天拓四方:边缘计算网关功能、特点与应用举例

传统的数据处理方式面临网络延迟、带宽限制和安全风险等问题。为了解决这些问题&#xff0c;边缘计算技术应运而生&#xff0c;而边缘计算网关作为其核心组件&#xff0c;正发挥着越来越重要的作用。边缘计算网关位于数据源和云数据中心之间。它具备数据采集、协议转换、数据处…

flask+vue+python跨区通勤人员健康体检预约管理系统

跨区通勤人员健康管理系统设计的目的是为用户提供体检项目等功能。 与其它应用程序相比&#xff0c;跨区通勤人员健康的设计主要面向于跨区通勤人员&#xff0c;旨在为管理员和用户提供一个跨区通勤人员健康管理系统。用户可以通过系统及时查看体检预约等。 跨区通勤人员健康管…

基于微信小程序的校园水电费管理小程序的研究与实现

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

06、全文检索 -- Solr -- Solr 全文检索之在图形界面管理 Core 的 Schema(演示对 普通字段、动态字段、拷贝字段 的添加和删除)

目录 Solr 全文检索之管理 Schema使用Web控制台管理Core的Schema3 种 字段解释&#xff1a;Field&#xff1a;普通字段Dynamic Field&#xff1a;动态字段Copy Field&#xff1a;拷贝字段 演示&#xff1a;添加 普通字段&#xff08; Field &#xff09;演示&#xff1a;添加 动…

web 技术栈有哪些?

前端技术栈&#xff1a; HTML&#xff08;超文本标记语言&#xff09;&#xff1a; 用于创建网页结构的标记语言&#xff0c;定义页面的内容和结构。 CSS&#xff08;层叠样式表&#xff09;&#xff1a; 用于设计和排版网页的样式表语言&#xff0c;负责页面的外观和样式。 …

Skywalking 应用笔记

概念 Skywalking是一款分布式的系统 性能监视工具&#xff0c;专为微服务、云原生架构和基于容器(Docker、K8s、Mesos)架构而设计。SkyWalking是一款 观察性的分析平台和应用性能管理系统&#xff0c;提供了 分布式追踪、性能指标分析、应用服务依赖分析、可视化一体化等解决方…

ChatGPT之制作短视频

引言 今天带来了如何使用 ChatGPT和剪映来制作简单的短视频教程&#xff0c;在这其中 ChatGPT的作用主要是帮我们生成文案&#xff0c;剪映的功能就是根据文案自动生成视频&#xff0c;并配上一些图片、动画、字幕和解说。 ChatGPT生成文案 首先&#xff0c;我们需要使用提示…

ChatGPT之搭建API代理服务

简介 一行Docker命令部署的 OpenAI/GPT API代理&#xff0c;支持SSE流式返回、腾讯云函数 。 项目地址&#xff1a;https://github.com/easychen/openai-api-proxy 这个项目可以自行搭建 OpenAI API 代理服务器工具&#xff0c;该项目是代理的服务器端&#xff0c;不是客户端。…

如何把vue项目打包成桌面程序 electron-builder

引入 我们想要把我们写的vue项目,打包成桌面程序&#xff0c;我们需要使用electron-builder这个库 如何使用 首先添加打包工具 vue add electron-builder 选择最新版本 下载完毕 我们可以看到我们的package.json中多了几行 electron:build&#xff1a;打包我们的可执行程序 e…

大白话介绍循环神经网络

循环神经网络实质为递归式的网络&#xff0c;它在处理时序任务表现出优良的效果&#xff0c;毕竟递归本来就是一步套一步的向下进行&#xff0c;而自然语言处理任务中涉及的文本天然满足这种时序性&#xff0c;比如我们写字就是从左到右一步步来的鸭&#xff0c;刚接触深度学习…

ACPF UI 框架设计与基础实现

世态人情,比明月清风更饶有滋味;可作书读,可当戏看。书上的描摹,戏里的扮演,即使栩栩如生,究竟只是文艺作品;人情世态,都是天真自然的流露,往往超出情理之外,新奇得令人震惊,令人骇怪,给人以更深刻的效益,更奇妙的娱乐。惟有身处卑微的人,最有机缘看到世态人情的…

【HTML 基础】元数据 meta 标签

文章目录 1. 设置字符集2. 描述网页内容3. 设置关键词4. 网页重定向5. 移动端优化注意事项结语 在网页开发中&#xff0c;<meta> 标签是一种十分重要的 HTML 元数据标签。通过巧妙使用 <meta> 标签&#xff0c;我们能够设置各种元数据&#xff0c;从而影响网页在浏…