🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
🚀 算法题 🚀 |
🍔 目录
- 🚩 题目链接
- ⛲ 题目描述
- 🌟 求解思路&实现代码&运行结果
- ⚡ 哈希表 + 前后缀处理
- 🥦 求解思路
- 🥦 实现代码
- 🥦 运行结果
- 💬 共勉
🚩 题目链接
- 2670. 找出不同元素数目差数组
⛲ 题目描述
给你一个下标从 0 开始的数组 nums ,数组长度为 n 。
nums 的 不同元素数目差 数组可以用一个长度为 n 的数组 diff 表示,其中 diff[i] 等于前缀 nums[0, …, i] 中不同元素的数目 减去 后缀 nums[i + 1, …, n - 1] 中不同元素的数目。
返回 nums 的 不同元素数目差 数组。
注意 nums[i, …, j] 表示 nums 的一个从下标 i 开始到下标 j 结束的子数组(包含下标 i 和 j 对应元素)。特别需要说明的是,如果 i > j ,则 nums[i, …, j] 表示一个空子数组。
示例 1:
输入:nums = [1,2,3,4,5]
输出:[-3,-1,1,3,5]
解释:
对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 4 个不同的元素。因此,diff[0] = 1 - 4 = -3 。
对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。
对于 i = 2,前缀中有 3 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 3 - 2 = 1 。
对于 i = 3,前缀中有 4 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 4 - 1 = 3 。
对于 i = 4,前缀中有 5 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 5 - 0 = 5 。
示例 2:
输入:nums = [3,2,3,4,2]
输出:[-2,-1,0,2,3]
解释:
对于 i = 0,前缀中有 1 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[0] = 1 - 3 = -2 。
对于 i = 1,前缀中有 2 个不同的元素,而在后缀中有 3 个不同的元素。因此,diff[1] = 2 - 3 = -1 。
对于 i = 2,前缀中有 2 个不同的元素,而在后缀中有 2 个不同的元素。因此,diff[2] = 2 - 2 = 0 。
对于 i = 3,前缀中有 3 个不同的元素,而在后缀中有 1 个不同的元素。因此,diff[3] = 3 - 1 = 2 。
对于 i = 4,前缀中有 3 个不同的元素,而在后缀中有 0 个不同的元素。因此,diff[4] = 3 - 0 = 3 。
提示:
1 <= n == nums.length <= 50
1 <= nums[i] <= 50
🌟 求解思路&实现代码&运行结果
⚡ 哈希表 + 前后缀处理
🥦 求解思路
- 该题需要求解的数组中某一个位置前不同的数字个数与这个位置后不同数字个数的差,作为当前的结果返回。
- 为了加速处理的过程,我们开辟俩个数组,一个从头到尾遍历,记录所有位置前不同的数字个数。另外一个数组从尾到头,记录所有位置后不同的数字个数。
- 怎么记录某一个位置前/后出现不同的数字个数呢?通过哈希表去重复的特性来记录结果。
- 实现的时候时候,需要注意一个细节就是,处理后缀数组的时候,需要多开辟一个空间大小的数组。
- 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {
public int[] distinctDifferenceArray(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
Set<Integer> set = new HashSet<>();
int[] pre = new int[n], suf = new int[n + 1];
for (int i = 0; i < n; i++) {
set.add(nums[i]);
pre[i] = set.size();
}
set.clear();
for (int i = n - 1; i >= 0; i--) {
set.add(nums[i]);
suf[i] = set.size();
}
for (int i = 0; i < n; i++) {
ans[i] = pre[i] - suf[i + 1];
}
return ans;
}
}
🥦 运行结果
💬 共勉
最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |