PyTorch学习系列教程:卷积神经网络【CNN】

本篇继续深度学习三大基石之卷积神经网络(CNN)——一类在计算机视觉领域大放异彩的网络架构。

图片

LeNet5——CNN的开山之作

前篇介绍了DNN网络,理论上通过增加网络层数可以逼近任意复杂的函数,即通用近似定理。但在实践过程中,增加网络层数也带来了两个问题:其一是层数较深的网络容易可能存在梯度消失或梯度弥散问题,其二是网络层数的增加也带来了过多的权重参数,对训练数据集和算力资源都带来了更大的考验。与此同时,针对图像这类特殊的训练数据,应用DNN时需要将其具有二维矩阵结构的像素点数据拉平成一维向量,而后方可作为DNN的模型输入——这一过程实际上丢失了图片像素点数据的方位信息,所以针对图像数据应用DNN也不见得是最优解。

在这样的研究背景下,卷积神经网络应运而生,并开启了深度学习的新篇章。延续前文的行文思路,本篇从以下几个方面展开介绍:

  • 什么是CNN
  • CNN为何有效
  • CNN的适用场景
  • 在PyTorch中的使用

01 什么是CNN

卷积神经网络,应为Convolutional Neural Network,简称CNN,一句话来说就是应用了卷积滤波器和池化层两类模块的神经网络。显然,这里表达的重点在于CNN网络的典型网络模块是卷积滤波器和池化层。所以,这里有必要首先介绍这两类模块。

1.卷积滤波器

作为一名通信专业毕业人士,我对卷积一词并不陌生,最初在信号处理的课中就有所接触。当然,卷积操作本身应该是一个数学层面的操作,对两个函数f(x)和g(x)做卷积,其实就是求解以下积分:

这个卷积的数学表达形式很优美,但其实有些过于抽象。从计算机的角度理解,一个连续的函数积分是不便操作的,因为计算机只能接受离散的输入,所以上述卷积操作的离散表达形式便是:

当然了,上述形式也只是从连续的积分形式变成了离散的求和形式。其中一个值得关注的细节是这里的卷积操作符号用的"*"——这也是后续所有卷积神经网络中沿用的卷积操作符号。

那么,这个卷积操作如何理解呢?这里引用网络上的一张信号处理卷积的动图:

图片

补充说明:在上述卷积操作中,两个函数x()和y()均为单位脉冲函数,即有值的时刻均取值为1。而至于说这个卷积有什么功能和优势,其实在通信处理中其最大的价值在于用于时域和频域的变换——时域卷积等于频域卷积相乘,用公式表达就是FFT(f*g) = FFT(f)×FFT(g),这里FFT表达信号处理领域常用的操作:快速傅里叶变换。换句话说,卷积和乘法构成了两个信号在时频域的交换操作。

ok,了解了卷积操作的功能和其用途之后,我们来看其在神经网络中能有什么应用,或者进一步说对于图像分类任务的神经网络有什么应用。

注意到,卷积操作适用于两个函数(连续积分形式),或者说两串序列数据(离散求和形式);更进一步地,即可通过交错形式逐一得到二者对位相乘的求和,并得到一个新的序列结果。也就是说,两个序列卷积的结果是一个新的序列。将这对应到用于图像分类的神经网络中,有两个问题:

  • 卷积操作的两个对象(或者说两串序列)分别是什么呢?一个应该是图像的像素数据,而另一个则是网络权重,也就是说卷积操作中进行滑动相乘求和的对象分别是图像像素数据和网络权重
  • 卷积是两个一维序列在卷,那应用到图像数据呢?难道还是要将其展平为一维序列吗?——这又回到了DNN中丢失了空间依赖信息的问题。所以,这里卷积操作的范围又进一步由一维序列延伸为二维矩阵——很小的一处改动,但却是CNN的灵魂之处。

除了上述两个问题,其实还隐藏一个细节:卷积之所以用“卷”这个词,大概是因为卷积操作的两个序列是反向滑动的——一个向左,一个向右。但无论以什么方向滑动,但对于像素数据和网络权重来说,卷积其本质是将二者对位相乘求和。那么,正向对位是对位,反向对位也是对位,为何还要卷一下呢——直接正向对位不足够吗?当然是可以的,所以神经网络中的卷积都是直接对位相乘求和。

经过这样设计的卷积操作已基本实现了从数学中卷积到神经网络中卷积的衍变,但还有最后一处调整:数学中的卷积操作是输入两个序列,得到一个新的序列,同时这两个序列可以长度不同,如果两个序列长度分别记作M和N的话,那么卷积得到的新序列长度为M+N-1。但在神经网络中,似乎这种维度不可控的操作不够友好,所以就要求两个卷积对象尺寸一致,并只保留了对位相乘求和的一个结果作为卷积输出。具体来说,单个卷积完成的是以下操作:

图片

至此,算是真正完成了神经网络中单个卷积操作的讲解,小结一下,可概括为以下要点:

  • 神经网络中的卷积操作源起于数学中的卷积,但取消了反向滑动的特点,而仅采用正向对位相乘的特性——从这个角度讲,神经网络中的卷积叫做加权求和更贴切
  • 神经网络中卷积操作的两个对象是像素数据和网络权重,其中这里的网络权重也叫做一个卷积核(kernel),且要求二者尺寸相同
  • 神经网络中的单词卷积操作只保留一个输出

类似于DNN网络中的神经元结构,在CNN网络中上述单个卷积核的操作应该叫做一个神经元。那么,有了单个神经元,就可以很容易的通过滑动的形式将其推广到整张图像:整张的含义既包括横向和纵向,也包括多个通道,例如彩色图片的RGB。所以,在一幅图像上做卷积操作,就是如下过程:

图片

注:一组卷积模板组成的矩阵称作卷积核,一个卷积核仅作用于单个输入通道上,若前一层有M个通道,后一层输出N个通道,则需要M×N个卷积核。除原始图片输入数据外,后续经过卷积层提取的每个通道都叫做一个特征图。

这里再次贴出DNN的网络架构,方便我们对比:

图片

对比DNN和CNN两种网络,可以窥探更深层的对比:

  • CNN的网络结构体现的也是相邻网络层之间的连接关系,但这种连接仅考虑了小范围的输入,即局部连接而非全连接
  • 与DNN中各神经元拥有不同的连接权重相比,CNN中的连接权重只有一套公共的模板,即权重共享

局部连接、权重共享,这是CNN的两大特性,也正是这两大特性,一方面大大降低了权重参数的数量,另一方面也更容易提取图像数据的局部特征!

2.池化层

池化层,英文为pooling,其实单纯从其英文是很难理解为何要在卷积神经网络中设计一个这样的结构。虽然目前我个人未能理解这个名字的含义,但其功能却是非常直观和简单的——如果说卷积滤波器是用于局部特征提取的话,那么池化层可以看做是局部特征降维。

举个例子,池化层典型的有三种类型,即MaxPooling,AvgPooling,MinPooling,SumPooling等,其中前两种更为常用。那么MaxPooling要干的事情就是将局部的一组像素求其最大值作为输出,相应的AvgPooling和MinPooling则是求均值或者最小值,SumPooling就是求和。举个例子:

图片

池化层的功能是非常容易理解的,那么设计的目的是什么呢?答案有两个:

  • 数据降维,即将大尺寸图像数据变为小尺寸
  • 特殊特征提取操作,即池化层其实也可看做是一种特殊的特征提取器(当然,与卷积核的滑动特征提取还是有显著的功能差异的)

至此,有了卷积层和池化层这两大模块的理解,即可用其堆叠出想要的卷积神经网络,例如在开篇给出的CNN开山之作——LeNet5中,则是一个含有两个卷积层、两个池化层和三个全连接层组成的网络。

上面从数学中的卷积操作开始,介绍了卷积神经网络中的卷积是如何设计的。实际上,当理解了卷积的编码实现之后,会发现其实卷积的计算还是非常简单的,一句话概括就是——卷积操作就是用卷积核中的权重矩阵通过滑窗的形式依次与图像像素数据进行相乘求和的过程

那么问题来了,为什么这样的设计是有效的?换言之,原始的图像数据经过卷积操作之后提取到了哪些特征?这就是接下来要介绍的内容。

02 CNN为何有效

CNN为何有效,回答这一问题的核心在于解释卷积操作为何有效,因为CNN网络中的标志性操作是卷积。

为了理解卷积操作是如何工作的,这里先给出一段形象的描述,然后再以LeNet5为例加以探索实践。

图片

图片源自台大李宏毅教授的深度学习PPT

在上述图片中,我们可以看到同样是检测鸟嘴(beak)的局部特征,通过选用相同的卷积核与其滤波,通过多次变换可以用以分辨其是一个尖嘴还是短嘴,从而为最终鸟的分类任务提供一个特征。

当然,这只是一个示意描述,那么实际情况如何呢?我们选用LeNet5对手写数字分类任务加以尝试,看看模型是怎么利用这一卷积操作。这里沿用深度学习模型搭建的三部曲:PyTorch学习系列教程:构建一个深度学习模型需要哪几步?

首先是mnist数据集的准备,可直接使用torchvision包在线下载:

ini
复制代码
from torchvision import datasets
from torch.utils.data import DataLoader, TensorDataset

train = datasets.MNIST('data/', download=True, train=True)
test = datasets.MNIST('data/', download=True, train=False)

X_train = train.data.unsqueeze(1)/255.0
y_train = train.targets
trainloader = DataLoader(TensorDataset(X_train, y_train), batch_size=256, shuffle=True)

X_test = test.data.unsqueeze(1)/255.0
y_test = test.targets

然后是LeNet5的网络模型(torchvision中内置了部分经典模型,但LeNet5由于比较简单,不在其中)

ini
复制代码
import torch
from torch import nn

class LeNet5(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 6, 5, padding=2)
        self.pool1 = nn.MaxPool2d((2, 2))
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.pool2 = nn.MaxPool2d((2, 2))
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool1(x)
        x = F.relu(self.conv2(x))
        x = self.pool2(x)
        x = x.view(len(x), -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

最后是模型的训练过程:

ini
复制代码
model = LeNet5()
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()

for epoch in trange(10):
    for X, y in trainloader:
        pred = model(X)
        loss = criterion(pred, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    with torch.no_grad():
        y_pred = model(X_train)
        acc_train = (y_pred.argmax(dim=1) == y_train).float().mean().item()
        y_pred = model(X_test)
        acc_test = (y_pred.argmax(dim=1) == y_test).float().mean().item()
        print(epoch, acc_train, acc_test)
### 训练结果 ###
 10%|████████▎                                                                          | 1/10 [00:28<04:12, 28.05s/it]
0 0.9379666447639465 0.9406999945640564
 20%|████████████████▌                                                                  | 2/10 [00:56<03:48, 28.54s/it]
1 0.9663333296775818 0.9685999751091003
 30%|████████████████████████▉                                                          | 3/10 [01:25<03:21, 28.76s/it]
2 0.975350022315979 0.9771000146865845
 40%|█████████████████████████████████▏                                                 | 4/10 [01:54<02:52, 28.78s/it]
3 0.9786166548728943 0.9787999987602234
 50%|█████████████████████████████████████████▌                                         | 5/10 [02:22<02:22, 28.43s/it]
4 0.9850000143051147 0.9853000044822693
 60%|█████████████████████████████████████████████████▊                                 | 6/10 [02:51<01:53, 28.49s/it]
5 0.9855666756629944 0.9843999743461609
 70%|██████████████████████████████████████████████████████████                         | 7/10 [03:20<01:26, 28.78s/it]
6 0.9882833361625671 0.9873999953269958
 80%|██████████████████████████████████████████████████████████████████▍                | 8/10 [03:51<00:58, 29.37s/it]
7 0.9877333045005798 0.9872000217437744
 90%|██████████████████████████████████████████████████████████████████████████▋        | 9/10 [04:21<00:29, 29.54s/it]
8 0.9905833601951599 0.9896000027656555
100%|██████████████████████████████████████████████████████████████████████████████████| 10/10 [04:49<00:00, 28.93s/it]
9 0.9918666481971741 0.9886000156402588  

可见,短短通过10个epoch的训练,模型在训练集和测试集上均取得了很好的准确率得分,其中训练集高达99%以上,测试集上也接近99%,说明模型不存在过拟合。

那么接下来我们的重点来了:经过LeNet5模型中的两个卷积层操作之后,原本的手写数字图片变成了什么形态?换句话说,提取到了哪些特征?

我们这里举两个特殊case研究一下:

case-1:测试集样本0,对应手写数字7

1-a:原始图片:

图片

1-b:经过第一层卷积,共提取6个通道的特征图

图片

1-c:经过第二层卷积,提取16个通道的特征图

图片

case-2:测试集样本1,对应手写数字2

2-a:原始图片

图片

2-b:经过第一层卷积,共提取6个通道的特征图

图片

2-c:经过第二层卷积,提取16个通道的特征图

图片

对比两组案例的具体卷积提取结果,其实是能大体看出一些规律的,例如第一层卷积后的第1和第2通道更加注重提取手写数字的边角特征(轮廓),而第4和第5通道特征图注重手写数字的纵向特征,且分别提取左边缘和右边缘的特征;类似地,第3和第6通道特征图则注重提取手写数字的横向特征,且分别提取上边缘和下边缘特征:

图片

而在此之后的第二卷积层中,则用于提取更为细节和丰富的特征,具体可以自行对比研究一下。至于说为什么提取了这些局部特征就可以完成手写数字的识别——即区分哪个是0,哪个是1等等?这里可以联想一下数字电路中逻辑判断的例子:对于由7个笔画组成的数字模板,当外圈全亮而中间不亮时为0,当右侧两个亮而其他不亮时为1。而现在LeNet5通过各个卷积核提取到的特征,就可根据取值大小对应到图片中各部分的亮暗情况,进而完成数字的分类。

图片

当然,这个例子只是简单的举例,模型的实际处理逻辑会比这复杂得多——但全靠模型自己去训练和学习。

以上,我们首先通过识别鸟嘴的直观例子描述了卷积操作在CNN网络中扮演的角色——提取局部特征,而后用LeNet5模型在mnist手写数字数据集上的实际案例加以研究分析,证实了这一直观理解。所以,CNN模型之所以有效,其核心在于——卷积操作具有提取图像数据局部特征的能力。

此外,卷积操作配合池化层,其实还有更鲁棒的效果:包括图像伸缩不变性、旋转不变性等,这是普通的DNN所不具备的能力,此处不再展开。

03 CNN的适用场景

前面一直在以图像数据为例介绍CNN的原理和应用,当然图像数据也确实是CNN网络最为擅长的场景,反之亦然,即最擅长图像数据的网络结构是CNN。

除了图像数据,随着近年来研究的进展,CNN其实在更多的领域都有所突破和崭露头角,例如:

  • 将一维卷积应用于序列数据建模,也可以提取相邻序列数据间的特征关系,从而很好的完成时序数据建模,例如TCN模型【参考文献:Temporal convolutional networks: A unified approach to action segmentation. 2016】
  • 将二维卷积应用于空间数据建模,例如交通流量预测中,一个路口的流量往往与其周边路口的流量大小密切相关,此时卷积也是有效的

总而言之,以卷积和池化操作为核心的CNN网络,最为适用的场景是图像数据,也可推广到其他需要提取局部特征的场景。

04 在PyTorch中的使用

最后,简单介绍一下CNN网络中的两个关键单元:卷积模块和池化模块,在PyTorch中的基本使用。

1.卷积模块:Conv1d、Conv2d,Conv3d

PyTorch中卷积模块主要包括3个,即分别为1维卷积Conv1d、2维卷积Conv2d和3维卷积Conv3d,其中Conv2d即是最常用于图像数据的二维卷积,也是最早出现的模块;Conv1d则可用于时序数据中的卷积,而Conv3d目前个人还未接触到。这里以Conv2d为例展开介绍一下。

首先是类的初始化参数:

图片

依次说明:

  • in_channels:输入层的图像数据通道数
  • out_channels:输出层的图像数据通道数
  • kernel_size:卷积核尺寸,既可以是标量,代表一个正方形的卷积核;也可以是一个二元组,分别代表长和宽
  • stride:卷积核滑动的步幅,默认情况下为1,即逐像素点移动,若设置大于1的数值,则可以实现跨步移动的效果
  • padding:边缘填充的层数,默认为0,表示对原始图片数据不做填充。如果取值大于0,例如padding1,则在原始图片数据的外圈添加一圈0值,注意这里是添加一圈,填充后的图片尺寸为原尺寸长和宽均+2。padding=1和stride=2的卷积示意图如下:

图片

padding=1,stride=2的卷积

  • dilation:用于控制是否是空洞卷积,这是后续论文新提出的卷积改进,即由原始的稠密的卷积核变为空洞卷积核,用于减小卷积核参数同时增大感受野。空洞卷积示意图如下:

图片

dilation=1的空㓊卷积

细品一下stride和dilation两个参数对卷积操作影响的区别。

然后是Conv2d的输入和输出数据。Conv2d可以看做是一个特殊的神经网络层,所以其本质上是将一个输入的tensor变换为另一个tensor,其中输入和输出tensor的尺寸即含义分别如下:

  • input:batch × in_channels × height × width
  • output: batch × output_channels × height × width

即输入和输出tensor主要是图像通道数上的改变,图像的高和宽的大小则要取决于kernel、padding、stride和dilation四个参数的综合作用,这里不再给出具体的计算公式。

2.池化模块:MaxPool1d、MaxPool2d,MaxPool3d

池化模块在PyTorch中主要内置了最大池化和平均池化,每种池化又可细分为一维、二维和三维池化层。这里仍然以MaxPool2d简要介绍:

图片

可见,池化模块的初始化参数与卷积模块中的初始化参数有很多共通之处,包括kernel、stride、padding和dilation等4个参数的设计上。相应的,由于池化层仅仅是各通道上实现数据尺寸的降维,所以其输入和输出数据的通道数不变,而仅仅是尺寸的变化,这里也不再给出相应的计算公式。


以上,便是对卷积神经网络的一些介绍,从卷积操作的起源、到对卷积提取局部特征的理解,最后到在PyTorch中的模块使用,希望对读者有所帮助。

最后

为了帮助大家更好的学习人工智能,这里给大家准备了一份人工智能入门/进阶学习资料,里面的内容都是适合学习的笔记和资料,不懂编程也能听懂、看懂,所有资料朋友们如果有需要全套人工智能入门+进阶学习资源包,可以在评论区或扫.码领取哦)~

在线教程

  • 麻省理工学院人工智能视频教程 – 麻省理工人工智能课程
  • 人工智能入门 – 人工智能基础学习。Peter Norvig举办的课程
  • EdX 人工智能 – 此课程讲授人工智能计算机系统设计的基本概念和技术。
  • 人工智能中的计划 – 计划是人工智能系统的基础部分之一。在这个课程中,你将会学习到让机器人执行一系列动作所需要的基本算法。
  • 机器人人工智能 – 这个课程将会教授你实现人工智能的基本方法,包括:概率推算,计划和搜索,本地化,跟踪和控制,全部都是围绕有关机器人设计。
  • 机器学习 – 有指导和无指导情况下的基本机器学习算法
  • 机器学习中的神经网络 – 智能神经网络上的算法和实践经验
  • 斯坦福统计学习

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

请添加图片描述

人工智能书籍

  • OpenCV(中文版).(布拉德斯基等)
  • OpenCV+3计算机视觉++Python语言实现+第二版
  • OpenCV3编程入门 毛星云编著
  • 数字图像处理_第三版
  • 人工智能:一种现代的方法
  • 深度学习面试宝典
  • 深度学习之PyTorch物体检测实战
  • 吴恩达DeepLearning.ai中文版笔记
  • 计算机视觉中的多视图几何
  • PyTorch-官方推荐教程-英文版
  • 《神经网络与深度学习》(邱锡鹏-20191121)

  • 在这里插入图片描述
    😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

第一阶段:零基础入门(3-6个月)

新手应首先通过少而精的学习,看到全景图,建立大局观。 通过完成小实验,建立信心,才能避免“从入门到放弃”的尴尬。因此,第一阶段只推荐4本最必要的书(而且这些书到了第二、三阶段也能继续用),入门以后,在后续学习中再“哪里不会补哪里”即可。

第二阶段:基础进阶(3-6个月)

熟读《机器学习算法的数学解析与Python实现》并动手实践后,你已经对机器学习有了基本的了解,不再是小白了。这时可以开始触类旁通,学习热门技术,加强实践水平。在深入学习的同时,也可以探索自己感兴趣的方向,为求职面试打好基础。

第三阶段:工作应用

这一阶段你已经不再需要引导,只需要一些推荐书目。如果你从入门时就确认了未来的工作方向,可以在第二阶段就提前阅读相关入门书籍(对应“商业落地五大方向”中的前两本),然后再“哪里不会补哪里”。

在这里插入图片描述
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/369721.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Oracle 面试题 | 09.精选Oracle高频面试题

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Vue3动态CSS

Vue3动态CSS 动态css值动态css对象module模式 动态css值 <template><div class"div">动态css</div> </template><script setup langts> import {ref} from vueconst style ref(blue) </script><style scoped> .div{colo…

【30秒看懂大数据】数据存储

PS:本文属专栏第27篇 公众号&#xff1a;知幽科技 简单说 数据存储是指将数据保存在计算机或其他媒体上&#xff0c;以备将来检索和使用&#xff0c;就像保存文件在电脑硬盘或云存储中一样。 举例理解 听说周末要下大雨&#xff0c;所以我临时决定下班后去超市采购下周末…

深入理解Istio服务网格(一)数据平面Envoy

一、服务网格概述(service mesh) 在传统的微服务架构中&#xff0c;服务间的调用&#xff0c;业务代码需要考虑认证、熔断、服务发现等非业务能力&#xff0c;在某种程度上&#xff0c;表现出了一定的耦合性 服务网格追求高级别的服务流量治理能力&#xff0c;认证、熔断、服…

解锁1688关键字搜索API接口:从海量商品中快速定位,开启商业智能新篇章!

1688关键字搜索API接口技术详解 一、概述 1688关键字搜索API接口是阿里巴巴提供的一套应用程序接口&#xff0c;允许第三方开发者通过关键字搜索1688平台上的商品信息。通过使用这个接口&#xff0c;开发者可以快速获取符合特定关键字的商品列表、详情、属性等信息&#xff0…

Fink CDC数据同步(一)环境部署

1 背景介绍 Apache Flink 是一个框架和分布式处理引擎&#xff0c;用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行&#xff0c;并能以内存速度和任意规模进行计算。 Flink CDC 是 Apache Flink 的一组源连接器&#xff0c;基于数据库日志的…

MySQL进阶45讲【13】为什么表数据删掉一半,表文件大小不变?

1 前言 有些小伙伴在删数据库数据时&#xff0c;会产生一个疑问&#xff0c;我的数据库占用空间大&#xff0c;我把一个最大的表删掉了一半的数据&#xff0c;怎么表文件的大小还是没变&#xff1f; 那么这篇文章&#xff0c;就介绍一下数据库表的空间回收&#xff0c;看看如…

智安网络2023年度回顾:我与您共存、信任与安全的一年

在2023年这一全球格局加速演变、经济复苏的关键时期&#xff0c;网络安全威胁呈现出前所未有的复杂性。作为中国网络安全行业的新兴企业&#xff0c;智安网络凭借其卓越的安全策略、技术创新和客户服务&#xff0c;书写了企业发展的辉煌篇章。 智安网络在应对网络安全挑战方面…

17- OpenCV:图像矩(Image Moments)和点多边形测试

目录 一、图像矩 1、矩的概念介绍 2、相关的API 3、代码演示 二、点多边形测试 1、概念介绍-点多边形测试 2、cv::pointPolygonTest 3、代码演示 一、图像矩 引言 在数字图像处理、计算机视觉与相关领域中&#xff0c;图像矩(Image moments)是指图像的某些特定像素灰…

嵌入式中物联网核心技术有哪些

IoT军事技术 物联网军事技术是一项利用IoT感知技术在军事活动中获取人、装备、作战环境状态的信息特征&#xff0c;从而实现在军事活动中做出智能化决策和控制局势的军事方针。 据悉&#xff0c;早于2012年10月军方联合了社会研究机构合力创建了“军事物联网联合实验室”。 …

论文阅读-在分布式数据库环境中对哈希算法进行负载均衡基准测试

论文名称&#xff1a;Benchmarking Hashing Algorithms for Load Balancing in a Distributed Database Environment 摘要 现代高负载应用使用多个数据库实例存储数据。这样的架构需要数据一致性&#xff0c;并且确保数据在节点之间均匀分布很重要。负载均衡被用来实现这些目…

环形链表(快慢指针)

给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环…

LINE官方账号全攻略:设置流程与基本功能

LINE官方账号是专为企业和品牌而设计&#xff0c;提供了更多的商业功能和定制选项。在中国台湾、日本和东南亚这些地区&#xff0c;LINE相比其他社交媒体软件具有更大的用户群体和更广泛的影响力&#xff0c;尤其在台湾和泰国地区&#xff0c;有90%的人都在使用LINE。而且LINE官…

1Panel应用推荐:青龙定时任务管理平台

1Panel&#xff08;github.com/1Panel-dev/1Panel&#xff09;是一款现代化、开源的Linux服务器运维管理面板&#xff0c;它致力于通过开源的方式&#xff0c;帮助用户简化建站与运维管理流程。为了方便广大用户快捷安装部署相关软件应用&#xff0c;1Panel特别开通应用商店&am…

769933-15-5,Biotin aniline,可以合成多种有机化合物和聚合物

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;769933-15-5&#xff0c;Biotin aniline&#xff0c;生物素苯胺&#xff0c;生物素-苯胺 一、基本信息 产品简介&#xff1a;Biotin Aniline&#xff0c;一种具有重要生物学功能的化合物&#xff0c;不仅参与了维生…

PHP入门指南:进阶篇

PHP入门指南&#xff1a;进阶篇 PHP入门指南&#xff1a;进阶篇1. 面向对象编程&#xff08;OOP&#xff09;1.1 类和对象的基本概念1.2 构造函数和析构函数1.3 属性和方法的访问控制1.4 继承与多态 2. 错误和异常处理2.1 错误处理机制2.2 异常处理机制2.3 自定义异常类 3. PHP…

免费ai绘画软件选择哪个?

对于免费AI绘画软件的选择&#xff0c;因为每个软件都有其独特的优点和适用场景&#xff0c;可以根据个人的需求和技能水平来决定。以下是被广泛认可的AI绘画软件&#xff1a; 1、建e网AI-一款为建筑室内设计师提供AI绘图的智能工具&#xff0c;具有文字生图&#xff0c;方案优…

Pytroch 自写训练模板适合入门版 包含十五种经典的自己复现的一维模型 1D CNN

训练模板 在毕业之前&#xff0c;决定整理一下手头的代码&#xff0c;自己做1D-CNN这吗久&#xff0c;打算开源一下自己使用的1D-CNN的代码&#xff0c;包括用随机数生成一个模拟的数据集&#xff0c;到自己写的一个比较好的适合入门的基础训练模板&#xff0c;以及自己复现的…

松软香甜的贝果面包,碱水清香可口饱腹

最近尝试了一款碱趣贝果面包&#xff0c;是手工制作的美味面包&#xff0c;它非常蓬松&#xff0c;口感熟软&#xff0c;而且食用方便快捷&#xff0c;只需加热一下就可以食用。 这款面包的表皮清香有韧性&#xff0c;里面松软可口&#xff0c;加热后散发出清新的香气&#xff…

负载均衡下webshell连接

目录 一、什么是负载均衡 分类 负载均衡算法 分类介绍 分类 均衡技术 主要应用 安装docker-compose 2.1上传的文件丢失 2.2 命令执行时的漂移 2.3 大工具投放失败 2.4 内网穿透工具失效 3.一些解决方案 总结 一、什么是负载均衡 负载均衡&#xff08;Load Balanc…