MySQL进阶45讲【11】怎么更好地给字符串字段加索引?

1 前言

现在,几乎所有的系统都支持邮箱登录,如何在邮箱这样的字段上建立合理的索引,是我们今天要讨论的问题。

假设,现在维护一个支持邮箱登录的系统,用户表是这么定义的:

mysql> create table SUser(
ID bigint unsigned primary key,
email varchar(64),
...
)engine=innodb;

由于要使用邮箱登录,所以业务代码中一定会出现类似于这样的语句:

mysql> select f1, f2 from SUser where email='xxx';

从MySQL进阶45讲【4】索引原理剖析(上)和MySQL进阶45讲【5】索引原理剖析(下)讲解索引的文章中,我们可以知道,如果email这个字段上没有索引,那么这个语句就只能做全表扫描。

同时,MySQL是支持前缀索引的,也就是说,可以定义字符串的一部分作为索引。默认地,如果创建索引的语句不指定前缀长度,那么索引就会包含整个字符串。

比如,这两个在email字段上创建索引的语句:

mysql> alter table SUser add index index1(email);
或
mysql> alter table SUser add index index2(email(6));

第一个语句创建的index1索引里面,包含了每个记录的整个字符串;而第二个语句创建的index2索引里面,对于每个记录都是只取前6个字节。

那么,这两种不同的定义在数据结构和存储上有什么区别呢?如下图所示,就是这两个索引的示意图。

图1 email 索引结构

图2 email(6) 索引结构
从图中可以看到,由于email(6)这个索引结构中每个邮箱字段都只取前6个字节(即:zhangs),所以占用的空间会更小,这就是使用前缀索引的优势。

但是,这同时带来的损失是,可能会增加额外的记录扫描次数。接下来,我们再看看下面这个语句,在这两个索引定义下分别是怎么执行的

select id,name,email from SUser where email='zhangssxyz@xxx.com';

如果使用的是index1(即email整个字符串的索引结构),执行顺序是这样的:

  1. 从index1索引树找到满足索引值是’zhangssxyz@xxx.com’的这条记录,取得ID2的值;
  2. 到主键上查到主键值是ID2的行,判断email的值是正确的,将这行记录加入结果集;
  3. 取index1索引树上刚刚查到的位置的下一条记录,发现已经不满足email='zhangssxyz@xxx.com’的条件了,循环结束。

这个过程中,只需要回主键索引取一次数据,所以系统认为只扫描了一行。

如果使用的是index2(即email(6)索引结构),执行顺序是这样的:

  1. 从index2索引树找到满足索引值是’zhangs’的记录,找到的第一个是ID1;
  2. 到主键上查到主键值是ID1的行,判断出email的值不是’zhangssxyz@xxx.com’,这行记录丢弃;
  3. 取index2上刚刚查到的位置的下一条记录,发现仍然是’zhangs’,取出ID2,再到ID索引上取整行然后判断,这次值对了,将这行记录加入结果集;
  4. 重复上一步,直到在idxe2上取到的值不是’zhangs’时,循环结束。

在这个过程中,要回主键索引取4次数据,也就是扫描了4行。

通过这个对比,就可以发现,使用前缀索引后,可能会导致查询语句读数据的次数变多。

但是,对于这个查询语句来说,如果定义的index2不是email(6)而是email(7),也就是说取email字段的前7个字节来构建索引的话,即满足前缀’zhangss’的记录只有一个,也能够直接查到ID2,只扫描一行就结束了。

也就是说使用前缀索引,定义好长度,就可以做到既节省空间,又不用额外增加太多的查询成本。

于是,就有个问题:当要给字符串创建前缀索引时,有什么方法能够确定应该使用多长的前缀呢?

实际上,我们在建立索引时关注的是区分度,区分度越高越好。因为区分度越高,意味着重复的键值越少。因此,我们可以通过统计索引上有多少个不同的值来判断要使用多长的前缀。

首先,使用下面这个语句,算出这个列上有多少个不同的值:

mysql> select count(distinct email) as L from SUser;

然后,依次选取不同长度的前缀来看这个值,比如我们要看一下4~7个字节的前缀索引,可以用这个语句:

mysql> select
count(distinct left(email,4)as L4,
count(distinct left(email,5)as L5,
count(distinct left(email,6)as L6,
count(distinct left(email,7)as L7,
from SUser;

当然,使用前缀索引很可能会损失区分度,所以需要预先设定一个可以接受的损失比例,比如5%。然后,在返回的L4~L7中,找出不小于 L * 95%的值,假设这里L6、L7都满足,就可以选择前缀长度6。

2 前缀索引对覆盖索引的影响

前面我们说了使用前缀索引可能会增加扫描行数,这会影响到性能。其实,前缀索引的影响不止如此,我们再看一下另外一个场景。

先来看看这个SQL语句:

select id,email from SUser where email='zhangssxyz@xxx.com';

与前面例子中的SQL语句

select id,name,email from SUser where email='zhangssxyz@xxx.com';

相比,这个语句只要求返回id和email字段。

所以,如果使用index1(即email整个字符串的索引结构)的话,可以利用覆盖索引,从index1查到结果后直接就返回了,不需要回到ID索引再去查一次。而如果使用index2(即email(6)索引结构)的话,就不得不回到ID索引再去判断email字段的值。

即使index2的定义修改为email(18)的前缀索引,这时候虽然index2已经包含了所有的信息,但InnoDB还是要回到id索引再查一下,因为系统并不确定前缀索引的定义是否截断了完整信息。

也就是说,使用前缀索引就用不上覆盖索引对查询性能的优化了,这也是在选择是否使用前缀索引时需要考虑的一个因素。

3 使用其他方式给字符串加索引

对于类似于邮箱这样的字段来说,使用前缀索引的效果可能还不错。但是,遇到前缀的区分度不够好的情况时,我们要怎么办呢?

比如,我们国家的身份证号,一共18位,其中前6位是地址码,所以同一个县的人的身份证号前6位一般会是相同的。

假设维护的数据库是一个市的公民信息系统,这时候如果对身份证号做长度为6的前缀索引的话,这个索引的区分度就非常低了。

按照我们前面说的方法,可能需要创建长度为12以上的前缀索引,才能够满足区分度要求。

但是,索引选取的越长,占用的磁盘空间就越大,相同的数据页能放下的索引值就越少,搜索的效率也就会越低。

那么,如果我们能够确定业务需求里面只有按照身份证进行等值查询的需求,还有没有别的处理方法呢?这种方法,既可以占用更小的空间,也能达到相同的查询效率。

答案是,有的。

3.1 倒序存储

第一种方式是使用倒序存储。如果存储身份证号的时候把它倒过来存,每次查询的时候,可以这么写:

mysql> select field_list from t where id_card = reverse('input_id_card_string');

由于身份证号的最后6位没有地址码这样的重复逻辑,所以最后这6位很可能就提供了足够的区分度。当然了,实践中不要忘记使用count(distinct)方法去做个验证。

3.2 使用hash字段

第二种方式是使用hash字段。可以在表上再创建一个整数字段,来保存身份证的校验码,同时在这个字段上创建索引。

mysql> alter table t add id_card_crc int unsigned, add index(id_card_crc);

然后每次插入新记录的时候,都同时用crc32()这个函数得到校验码填到这个新字段。由于校验码可能存在冲突,也就是说两个不同的身份证号通过crc32()函数得到的结果可能是相同的,所以的查询语where部分要判断id_card的值是否精确相同。

mysql> select field_list from t where id_card_crc=crc32('input_id_card_string') and id_card='input_id_card_string';

这样,索引的长度变成了4个字节,比原来小了很多。

3.3 两种方式的异同点

接下来,我们再一起看看使用倒序存储和使用hash字段这两种方法的异同点。

首先,它们的相同点是,都不支持范围查询。倒序存储的字段上创建的索引是按照倒序字符串的方式排序的,已经没有办法利用索引方式查出身份证号码在[ID_X, ID_Y]的所有市民了。同样地,hash字段的方式也只能支持等值查询。它们的区别,主要体现在以下三个方面:

  1. 从占用的额外空间来看,倒序存储方式在主键索引上,不会消耗额外的存储空间,而hash字段方法需要增加一个字段。当然,倒序存储方式使用4个字节的前缀长度应该是不够的,如果再长一点,这个消耗跟额外这个hash字段也差不多抵消了。
  2. 在CPU消耗方面,倒序方式每次写和读的时候,都需要额外调用一次reverse函数,而hash字段的方式需要额外调用一次crc32()函数。如果只从这两个函数的计算复杂度来看的话,reverse函数额外消耗的CPU资源会更小些。
  3. 从查询效率上看,使用hash字段方式的查询性能相对更稳定一些。因为crc32算出来的值虽然有冲突的概率,但是概率非常小,可以认为每次查询的平均扫描行数接近1。而倒序存储方式毕竟还是用的前缀索引的方式,也就是说还是会增加扫描行数。

4 小结

在今天这篇文章中,主要讨论字符串字段创建索引的场景。我们来回顾一下,可以使用的方式有:

  1. 直接创建完整索引,这样可能比较占用空间;
  2. 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引;
  3. 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题;
  4. 创建hash字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。

在实际应用中,要根据业务字段的特点选择使用哪种方式。

最后给大家一个问题,如果在维护一个学校的学生信息数据库,学生登录名的统一格式是”学号@gmail.com", 而学号的规则是:十五位的数字,其中前三位是所在城市编号、第四到第六位是学校编号、第七位到第十位是入学年份、最后五位是顺序编号。

系统登录的时候都需要学生输入登录名和密码,验证正确后才能继续使用系统。就只考虑登录验证这个行为的话,你会怎么设计这个登录名的索引呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/367930.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Vulnhub-DC8

信息收集 # arp-scan -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:43:7c:b1, IPv4: 192.168.1.60 Starting arp-scan 1.10.0 with 256 hosts (https://github.com/royhills/arp-scan) 192.168.1.1 00:50:56:c0:00:08 VMware, Inc. 192.168.1.2 00:50:56:f…

java-static关键字

目录​​​​​​​ 1、介绍 2、静态代码块 3、静态代码块初始化时机 3.1、例子一 3.2、例子二 1、介绍 ​​​​​​​static翻译为静态的。static修饰的方法是静态方法。static修饰的变量是静态变量。都可以使用“类名.”的方式访问,当然也可以用引用.的方式…

Android学习之路(27) ProGuard,混淆,R8优化

前言 使用java编写的源代码编译后生成了对于的class文件,但是class文件是一个非常标准的文件,市面上很多软件都可以对class文件进行反编译,为了我们app的安全性,就需要使用到Android代码混淆这一功能。 针对 Java 的混淆&#x…

JavaWeb,Vue的学习(下)

Router路由 路由(Router)简介 定义:路由就是根据不同的 URL 地址展示不同的内容或页面。通俗理解:路由就像是一个地图,我们要去不同的地方,需要通过不同的路线进行导航。 路由的作用 单页应用程序&…

Flink CEP(基本概念)

Flink CEP 在Flink的学习过程中,我们已经掌握了从基本原理和核心层的DataStream API到底层的处理函数,再到应用层的Table API和SQL的各种手段,可以应对实际应用开发的各种需求。然而,在实际应用中,还有一类更为复…

奇瑞瑞虎8,是真不能随便碰

文 | AUTO芯球 作者 | 李虎 我是实在看不下去了啊 这奔驰车主砸车 现在开始反转了啊 但卡住我喉咙的是定损5200的奇瑞引擎盖啊 我是真买不起,也不敢买啊 我怕A柱断了,要修20万啊 但我一算,这也不对啊 顶配的报价也只有16.18万啊 如果…

linux 文件查看 head 、 cat 、 less 、tail 、grep

查看文件详细信息 stat 文件 cat 》》适合显示小文件【行数比较少】,如果行数较多,屏幕显示不完整(如果虚拟操作,是无法上下键的,或者滚动鼠标的,第三方 xsheel,crt 可以方向键查看&#xf…

Matplotlib雷达图教程:学会绘制炫酷多彩的多维数据可视化【第53篇—python:Seaborn大全】

文章目录 Matplotlib雷达图绘制指南:炫酷雷达图参数解析与实战1. 普通雷达图2. 堆叠雷达图3. 多个雷达图4. 矩阵雷达图5. 极坐标雷达图6. 定制化雷达图外观7. 调整雷达图坐标轴范围8. 雷达图的子图布局9. 导出雷达图总结 Matplotlib雷达图绘制指南:炫酷雷…

[SWPUCTF 2021 新生赛]Do_you_know_http

我们看到它让我们用WLLM浏览器登录 那我们修改User-Agent的值即可 发现有一个a.php的我们进入该目录 它提示我们不在本地服务器上 发现有一个/secretttt.php的目录 我进入即可获得flag

设计模式_策略模式_Strategy

案例引入 有各种鸭子,比如野鸭、北京鸭、水鸭等。 鸭子有各种行为,比如走路、叫、飞行等。不同鸭子的行为可能略有不同。要求显示鸭子的信息 传统方案实现 不同的鸭子继承一个父类Duck,如果是相同的行为就继承,不同行为就重写方…

【Mode Management】BswM模块和其他模块的交互

目录 1.BSWM模块和COM模块 2.BSWM模块和ComM模块 3.BSWM模块和CanSM模块 4.BSWM模块和DCM模块 4.1 DCM通过BSWM控制通信 4.2 DCM通过BSWM控制ECU复位 5.BSWM模块和自定义SWC模块 6.BSWM模块和NVM模块 6.1 BswMNvMJobModeIndication 6.2 BswMNvMRequest 6.3 小结 1.B…

C++初阶 内存管理和模板

目录 一、new 1.1什么是new? 1.2为什么要有new? 1.3使用new 1.4 new的超级好处 二、delete 2.1什么是delete? 2.2为什么要有delete? 2.3使用delete 三、 malloc / free和new / delete的共同点和区别 四、浅谈模板 4.1什…

可解释性AI(XAI):构建透明和值得信赖的决策过程

可解释性AI(XAI)旨在提高人工智能系统的透明度和可理解性,使人们更好地理解AI的决策过程和原理。随着AI技术的广泛应用,XAI成为了一个备受关注的重要领域。它不仅有助于建立人们对AI的信任,还可以帮助解决AI伦理和偏见…

系统添加多版本支持

记录一下最近做的一个需求: 前段时间做的【监狱点名系统】改成公司打卡考勤用的系统,里面的"服刑人员"、"监区"、"入监/出监"……等相关配置需要做改动,所以考虑加一个全局的标志,来区分一下版本。…

大数据本地环境搭建03-Spark搭建

需要提前部署好 Zookeeper/Hadoop/Hive 环境 1 Local模式 1.1 上传压缩包 下载链接 链接:https://pan.baidu.com/s/1rLq39ddxh7np7JKiuRAhDA?pwde20h 提取码:e20h 将spark-3.1.2-bin-hadoop3.2.tar.gz压缩包到node1下的/export/server目录 1.2 解压压…

EF Core入门例子(以SqLite为数据库)

测试环境: visual studio 2017 .net core 2.1 具体步骤如下: 1 新增名称为EFCoreDemo的.net core控制台程序,版本选择.net core 2.1,项目不能放到带中文的目录下,不然到后面执行Add-Migration命令时会报如下的错误…

关于ZYZ旋转和XYZ旋转

ZYZ旋转和XYZ旋转 概述1、XYZ旋转2、ZYZ旋转 概述 以下公式默认为右手坐标系;ZYZ通常可以避免死解情况,因此在六轴末端解算时常被用到;参考文章 1、XYZ旋转 XYZ旋转一般是绕固定轴旋转(外旋),旋转矩阵的构成为:RzRy…

供应链系统架构的设计与实践

供应链系统是现代企业管理中不可或缺的一部分,它涉及到从原材料采购到产品销售的整个生产流程。一个高效的供应链系统可以帮助企业实现成本控制、库存优化和客户满意度提升等目标。在本文中,我们将讨论供应链系统的设计与实践。 一、供应链系统设计 1.…

kerberos+kafka(2.13)认证(单节点ubuntu)

一:搭建kerberos。 1. 运行安装命令 apt-get install krb5-admin-server krb5-kdc krb5-user krb5-config2. 检查服务是否启动。 systemctl status krb5-admin-server systemctl status krb5-kdcsystemctl start krb5-admin-server systemctl startkrb5-kdc3. 修…

GrayLog踩坑历险记

背景 GrayLog作为ELK的替代产品,是新生代的日志采集框架。在一个采集节点日志的需求中,因为节点很多,产生的日志也很多,因此尝试了使用GrayLog进行日志的采集。下面记录一下使用GrayLog中遇到的坑和解决方案。 一、部署与启动 …