聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度

前言

我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity = 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二:

  • 每隔index_granularity行对主键组的数据进行采样,形成稀疏索引,并存储在primary.idx文件中;

  • 每隔index_granularity行对每一列的压缩数据([column].bin)进行采样,形成数据标记,并存储在[column].mrk文件中。

index_granularity、primary.idx、[column].bin/mrk之间的关系可以用ClickHouse之父Alexey Milovidov展示过的一幅简图来表示。

image.png

但是早在ClickHouse 19.11.8版本,社区就引入了自适应(adaptive)索引粒度的特性,并且在之后的版本中都是默认开启的。也就是说,主键索引和数据标记生成的间隔可以不再固定,更加灵活。下面通过简单实例来讲解固定索引粒度和自适应索引粒度之间的不同之处。

固定索引粒度

利用Yandex.Metrica提供的hits_v1测试数据集,创建如下的表。

CREATE TABLE datasets.hits_v1_fixed
(
    `WatchID` UInt64,
    `JavaEnable` UInt8,
    `Title` String,
    -- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, 
         index_granularity_bytes = 0;  -- Disable adaptive index granularity

注意使用SETTINGS index_granularity_bytes = 0取消自适应索引粒度。将测试数据导入之后,执行OPTIMIZE TABLE语句触发merge,以方便观察索引和标记数据。

来到merge完成后的数据part目录中——笔者这里是201403_1_32_3,并利用od(octal dump)命令观察primary.idx中的内容。注意索引列一共有3列,Counter和intHash32(UserID)都是32位整形,EventDate是16位整形(Date类型存储的是距离1970-01-01的天数)。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 
          57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 
 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 
    78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx 
        1635  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx 
 16149        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx 
  1562260480  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx 
        3266  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx 
 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx 
   490736209  # intHash32(UserID)[2]

能够看出ORDER BY的第一关键字Counter确实是递增的,但是不足以体现出index_granularity的影响。因此再观察一下标记文件的内容,以8位整形的Age列为例,比较简单。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 320 Age.mrk
                    0                    0
                    0                 8192
                    0                16384
                    0                24576
                    0                32768
                    0                40960
                    0                49152
                    0                57344
                19423                    0
                19423                 8192
                19423                16384
                19423                24576
                19423                32768
                19423                40960
                19423                49152
                19423                57344
                45658                    0
                45658                 8192
                45658                16384
                45658                24576

上面打印出了两列数据,表示被选为标记的行的两个属性:第一个属性为该行所处的压缩数据块在对应bin文件中的起始偏移量,第二个属性为该行在数据块解压后,在块内部所处的偏移量,单位均为字节。由于一条Age数据在解压的情况下正好占用1字节,所以能够证明数据标记是按照固定index_granularity的规则生成的。

自适应索引粒度

创建同样结构的表,写入相同的测试数据,但是将index_granularity_bytes设为1MB(为了方便看出差异而已,默认值是10MB),以启用自适应索引粒度。

CREATE TABLE datasets.hits_v1_adaptive
(
    `WatchID` UInt64,
    `JavaEnable` UInt8,
    `Title` String,
    -- A lot more columns...
)
ENGINE = MergeTree()
PARTITION BY toYYYYMM(EventDate)
ORDER BY (CounterID, EventDate, intHash32(UserID))
SAMPLE BY intHash32(UserID)
SETTINGS index_granularity = 8192, 
         index_granularity_bytes = 1048576;  -- Enable adaptive index granularity

index_granularity_bytes表示每隔表中数据的大小来生成索引和标记,且与index_granularity共同作用,只要满足两个条件之一即生成。

触发merge之后,观察primary.idx的数据。

[root@ck-test001 201403_1_32_3]# od -An -i -j 0 -N 4 primary.idx 
          57  # Counter[0]
[root@ck-test001 201403_1_32_3]# od -An -d -j 4 -N 2 primary.idx 
 16146        # EventDate[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 6 -N 4 primary.idx 
    78076527  # intHash32(UserID)[0]
[root@ck-test001 201403_1_32_3]# od -An -i -j 10 -N 4 primary.idx
          61  # Counter[1]
[root@ck-test001 201403_1_32_3]# od -An -d -j 14 -N 2 primary.idx
 16151        # EventDate[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 16 -N 4 primary.idx
  1579769176  # intHash32(UserID)[1]
[root@ck-test001 201403_1_32_3]# od -An -i -j 20 -N 4 primary.idx
          63  # Counter[2]
[root@ck-test001 201403_1_32_3]# od -An -d -j 24 -N 2 primary.idx
 16148        # EventDate[2]
[root@ck-test001 201403_1_32_3]# od -An -i -j 26 -N 4 primary.idx
  2037061113  # intHash32(UserID)[2]

通过Counter列的数据可见,主键索引明显地变密集了,说明index_granularity_bytes的设定生效了。接下来仍然以Age列为例观察标记文件,注意文件扩展名变成了mrk2,说明启用了自适应索引粒度。

[root@ck-test001 201403_1_32_3]# od -An -l -j 0 -N 2048 --width=24 Age.mrk2
                    0                    0                 1120
                    0                 1120                 1120
                    0                 2240                 1120
                    0                 3360                 1120
                    0                 4480                 1120
                    0                 5600                 1120
                    0                 6720                 1120
                    0                 7840                  352
                    0                 8192                 1111
                    0                 9303                 1111
                    0                10414                 1111
                    0                11525                 1111
                    0                12636                 1111
                    0                13747                 1111
                    0                14858                 1111
                    0                15969                  415
                    0                16384                 1096
# 略去一些
                17694                    0                 1102
                17694                 1102                 1102
                17694                 2204                 1102
                17694                 3306                 1102
                17694                 4408                 1102
                17694                 5510                 1102
                17694                 6612                  956
                17694                 7568                 1104
# ......

mrk2文件被格式化成了3列,前两列的含义与mrk文件相同,而第三列的含义则是两个标记之间相隔的行数。可以观察到,每隔1100行左右就会生成一个标记(同时也说明该表内1MB的数据大约包含1100行)。同时,在偏移量计数达到8192、16384等8192的倍数时(即经过了index_granularity的倍数行),同样也会生成标记,证明两个参数是协同生效的。

最后一个问题:ClickHouse为什么要设计自适应索引粒度呢?

当一行的数据量比较大时(比如达到了1kB甚至数kB),单纯按照固定索引粒度会造成每个“颗粒”(granule)的数据量膨胀,拖累读写性能。有了自适应索引粒度之后,每个granule的数据量可以被控制在合理的范围内,官方给定的默认值10MB在大多数情况下都不需要更改。

作者:京东物流 康琪

来源:京东云开发者社区 自猿其说 Tech 转载请注明来源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/367210.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

pytorch 利用Tensorboar记录训练过程loss变化

文章目录 1. LossHistory日志类定义2. LossHistory类的使用2.1 实例化LossHistory2.2 记录每个epoch的loss2.3 训练结束close掉SummaryWriter 3. 利用Tensorboard 可视化3.1 显示可视化效果 参考 利用Tensorboard记录训练过程中每个epoch的训练loss以及验证loss,便于…

布隆过滤器的概述和使用

1 布隆过滤器概述 1.1 概述 布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是由一个很长的二进制向量(数组)和一系列随机映射函数(hash函数)组成,它不存放数据的明细内容&#xff0…

FANUC机器人开机时无法进入系统,示教器黑屏故障处理总结

FANUC机器人开机时无法进入系统,示教器黑屏故障处理总结 故障描述: FANUC机器人开机时,示教器在初始化时显示:EMAC initial call failed(示教器上电时会进入boot画面,左上角会出现一些白色的英文提示&#…

YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读

YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读 YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结 OLOv5-第Y2周:训练自己的数据集) YOLOv5白皮书-第Y3周:yolov5s.…

学习日志以及个人总结 (16)

共用体 共用体 union 共用体名 { 成员列表; };//表示定义一个共用体类型 注意: 1.共用体 初始化 --- 只能给一个值,默认是给到第一个成员变量 2.共用体成员变量辅助 3.可以判断大小端 ----※!! 实际用途…

猫用空气净化器好吗?好用的养猫宠物空气净化器品牌推荐

作为一个养猫五年的资深铲屎官,我对如何轻松快乐地养猫有一些心得。猫咪每天在家里奔跑,导致家里经常会出现“猫毛雪”,沙发、地板和衣服都成了重灾区。在除猫毛的问题上,我真的尝试了各种方法,几乎用上了所有的技能。…

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测 目录 2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效…

2024美赛E题数学建模思路代码数据分享

2024 ICM Problem E: Sustainability of Property Insurance 本题要求选取不同大陆上经历极端天气的两个地区来为保险公司开发模型,本题的重点是找到尽可能多而全的数据,包括天气数据,经济数据,人口数据等。 模型选择&#xff1a…

《最新出炉》系列入门篇-Python+Playwright自动化测试-10-标签页操作(tab)

1.简介 标签操作其实也是基于浏览器上下文(BrowserContext)进行操作的,而且宏哥在之前的BrowserContext也有提到过,但是有的童鞋或者小伙伴还是不清楚怎么操作,或者思路有点模糊,因此今天单独来对其进行讲…

Windows内存管理 - 物理内存概念(Physical Memory Address)

作为windows驱动程序的程序员,需要比普通程序员更多的了解Windows内部的内存管理机制,并在驱动程序中有效地使用内存。在驱动程序编写中,分配和管理内存不能使用熟知的Win32 API函数,取而代之的是DDK提供的高效的内核函数。程序员…

PKG系统安装包及IPSW固件:MacOS 11-14 Sonoma 正式版

MacOS 14 Sonoma,为提高生产力和创造力带来了全新的功能,有了更多使用小部件和令人惊叹的新屏幕保护程序进行个性化设置的方法,对Safari浏览器和视频会议进行了重大更新,以及优化的游戏体验——Mac体验比以往任何时候都更好。 mac…

MySQL篇----第三篇

系列文章目录 文章目录 系列文章目录前言一、InnoDB与MyISAM的区别二、索引三、常见索引原则有前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、InnoDB与MyISAM…

【Android Studio 启动出错】

Android Studio版本:2022.3.1 出错前操作: 昨晚开着三四个项目,然后太晚了直接关机睡觉,第二天起来开机,启动Android Studio,就出现了这个问题: Internal error. Please refer to https://co…

opencv+mediapipe 手势识别控制电脑音量(详细注释解析)

前段时间社团布置了一个手势识别控制电脑音量的小任务,今天记录一下学习过程,将大佬作品在我的贫瘠的基础上解释一下~ 项目主要由以下4个步骤组成: 1、使用OpenCV读取摄像头视频流 2、识别手掌关键点像素坐标 3、根据拇指和食指指尖的坐标…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 2月3日,星期六

每天一分钟,知晓天下事! 2024年2月3日 星期六 农历腊月廿四 南小年 1、 气象局:将雨雪冰冻三级应急响应提升为二级,针对性做好春运气象保障服务。 2、 教育部:鼓励银龄教师投身西部地区、民族地区民办学校。 3、 四部…

解决java.lang.ClassCastException

目录 问题 原因 解决方案 问题 前后端分离开发中&#xff0c;往往需要统一封装返回数据用到一个Result<T>类包装多个接口&#xff1a; 重复劳动并不优雅&#xff0c;于是想用RestControllerAdvice做控制器拦截增强&#xff0c;进行封装。 代码如下&#xff1a; Res…

[Python] 什么是PCA降维技术以及scikit-learn中PCA类使用案例(图文教程,含详细代码)

什么是维度&#xff1f; 对于Numpy中数组来说&#xff0c;维度就是功能shape返回的结果&#xff0c;shape中返回了几个数字&#xff0c;就是几维。索引以外的数据&#xff0c;不分行列的叫一维&#xff08;此时shape返回唯一的维度上的数据个数&#xff09;&#xff0c;有行列…

ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1+

错误记录&#xff1a; 安装使用moviepy&#xff0c;测试出现问题。 解决方案&#xff1a; 采用降低urllib3的版本的方式&#xff0c;实测可行。 pip install urllib31.*

【Kafka专栏】windows搭建Kafka环境 详细教程(01)

文章目录 01 引言1.1 官网地址1.2 概述简介1.3 kafka与zookeeper 02 部署zookeeper2.1 下载组件包2.2 解压压缩包&#xff08;1&#xff09;解压到任意路径&#xff08;2&#xff09;解压后的目录创建数据目录data 2.3 修改zoo配置2.4 设置系统变量2.5 启动zookeepe服务&#x…

数据结构+算法(第13篇):精通二叉树的“独门忍术”——线索二叉树(上)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…