37.RocketMQ之Broker消息存储源码分析


highlight: arduino-light

消息存储文件

rocketMQ的消息持久化在我们在搭建集群时都特意指定的文件存储路径,进入指定的store目录下就可以看到。

下面介绍各文件含义

CommitLog

存储消息的元数据。produce发出的所有消息都会顺序存入到CommitLog文件当中。 CommitLog由多个文件组成,每个文件固定大小1G。以第一条消息的偏移量为文件名。

ConsumerQueue

对CommitLog做索引,把消息按照Topic、队列进行归类并存储在ConsumerQueue中,但是存储的并不是消息本身,而是消息在CommitLog的索引。ConsumerQueue中存储的有消息的offset、size、Tag等等,记录当前MessageQueue被哪些消费者组消费到了哪一条CommitLog,方便消费者组快速定位到对应的消息!

Index

类似于ConsumerQueue,也是对CommitLog做索引,与ConsumerQueue不同的是:为消息查询提供了一种通过key或时间区间来查询消息的方法,也是记录消息的offset、size、Tag等等

abort

这个文件是RocketMQ用来判断程序是否正常关闭的一个标识文件。正常情况下,会在启动时创建abort文件,在正常关闭服务时删除。

但是如果遇到一些服务器宕机,或者kill -9这样一些非正常关闭服务的情况,这个abort文件就不会删除。

因此RocketMQ就可以判断上一次服务是非正常关闭的,后续就会做一些数据恢复的操作。

checkpoint

数据存盘检查点,存储CommitLog文件最后一次刷盘时间戳、consumerquueue最后一次刷盘时间,index索引文件最后一次刷盘时间戳。

config/*.json:

这些文件是将RocketMQ的一些关键配置信息以能看懂的json形式进行存盘保存。例如Topic配置、消费者组配置、消费者组消息偏移量Offset 等等一些信息。

其中consumerOffset.json是集群模式下的消费者的消费进度。

md { "offsetTable":{ "ojbk@ojbkConsumer":{0:1,1:1,2:1,3:1,4:1,5:1,6:1,7:1 }, "%RETRY%1048@1048":{0:0 }, "%RETRY%rnmConsumer@rnmConsumer":{0:293 }, "tyrant@group1":{0:11,1:9,2:8,3:11,4:11,5:8,6:9,7:9 }, "tyrant@1048":{0:15,1:13,2:12,3:15,4:15,5:12,6:13,7:13 }, "%RETRY%group1@group1":{0:1608 }, "ok@okConsumer":{0:1,1:1,2:1,3:1,4:1,5:1,6:1,7:1 }, "%RETRY%ojbkConsumer@ojbkConsumer":{0:6 }, "rnm@rnmConsumer":{0:20,1:20,2:20,3:20,4:20,5:20,6:20,7:20 }, "%RETRY%okConsumer@okConsumer":{0:0 } } }

.rocketmq_offsets

C:\Users\彭方亮.rocketmq_offsets\172.18.95.180\@DEFAULT

其中consumerOffset.json是广播模式下的消费者的消费进度。

比如C:\Users\彭方亮.rocketmq_offsets\172.18.95.180\@DEFAULT\tyrantConsumer\offsets.json

md { "offsetTable":{{ "brokerName":"broker-a", "queueId":2, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":3, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":4, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":5, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":6, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":7, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":0, "topic":"tyrantor" }:2,{ "brokerName":"broker-a", "queueId":1, "topic":"tyrantor" }:2 } }

消息存储流程分析

消息存储流程

1.要发送的消息,会按顺序写入commitlog中,这里所有topic和queue共享一个文件

2.存入commitlog后,由于消息会按照topic纬度来消费,会异步构建consumeQueue(逻辑队列)和index(索引文件),consumeQueue存储消息的commitlogOffset/messageSize/tagHashCode, 方便定位commitlog中的消息实体。

3.每个 Topic下的每个Message Queue都有一个对应的ConsumeQueue文件。索引文件(Index)提供消息检索的能力,主要在问题排查和数据统计等场景应用

4.消费者会从consumeQueue取到msgOffset,方便快速取出消息

RocketMQ为了保证消息发送的高吞吐量,采用单一文件存储所有主题消息,保证消息存储是完全的顺序写,但这样给文件读取带来了不便。

为此RocketMQ为了方便消息消费构建了消息消费队列文件ConsumeQueue,基于主题与队列进行组织。

同时RocketMQ为消息实现了Hash索引文件IndexFile,可以为消息设置索引键,根据所以能够快速从CommitLog文件中检索消息。

当消息达到CommitLog后,会通过ReputMessageService线程接近实时地将消息转发给消息消费队列文件ConsumeQueue与索引文件IndexFile。

对于生产者将消息写入broker的时候,broker会直接把消息写入到磁盘的commitLog文件,那么broker是如何提升整个过程的性能的呢?

问题分析下:因为这个部分性能会直接提升broker处理消息写入的吞吐量,比如写入一条消息到commitLog磁盘文件假设需要10ms,那么每个线程每秒可以处理100个写入消息,假设有100个线程,每秒钟只能处理1万个写入消息请求。 但是如果将消息写入commitLog磁盘文件的性能优化为只需要1ms,那么每个线程每秒可以处理1000个消息写入,此时100个线程可以处理10万个写入请求,所以明显的可以看到,broker将接收到的消息写入commitLog磁盘文件的性能,对他的TPS有很大的影响.

铺垫【broker是基于OS操作系统的pageCache和顺序写两个机制,来提升commitLog文件的性能的】;

首先broker是以顺序的方式将消息写入commitLog磁盘文件的,也就是每次写入就是在文件的末尾追加一条数据就可以了,文件顺序写的性能要比随机写的性能提升很多,另外,数据写入commitLog文件的时候,其实不是直接写入底层的物理磁盘文件的,而是先进入OS的pagecache内存缓存中,然后后续由OS的后台线程选择一个时间,异步化的将OSPageCache内存缓冲中的数据刷入底层的磁盘文件。

commitLog优化思路总结:采用磁盘文件顺序写+OSPageCache缓存写入+OS异步刷盘的策略,基本上可以让消息写入commitLog的性能和直接写入内存是差不多的,所以broker才可以让broker高吞吐的处理每秒大量的消息写入。异步刷盘可能会导致消息数据丢失,简单提一嘴同步刷盘的机制:同步刷盘就是生产者发送一条消息出去,broker接收到了消息,必须直接强制的将这条消息刷入底层的物理磁盘中,然后返回ack给producer生产者,此时才知道消息写入成功了,只要消息进入了物理磁盘,数据就一定不会丢失,但是性能受了极大的影响;

通过上述优化,就实现了一个效果,写磁盘文件的时候都是进入pageCache的,保证写入的高性能,同时尽可能多的通过map+madvise的映射后预热机制,将磁盘文件中的数据尽可能多的加载到pageCache中来,对consumequeue,commitLog进行读取的时候,才能达到尽可能从内存中读取数据;

实际上在broker读写磁盘的时候,大量的将mmap技术和pagecache技术结合使用,通过mmap技术减少数据拷贝次数,利用pagecache技术尽可能有限读写内存,而不是物理磁盘;

消息顺序存储好处

1.CommitLog 顺序写 ,可以大大提高写人效率,提高堆积能力

2.虽然是随机读,但是利用操作系统的pagecache机制,可以批量地从磁盘读取,作为cache存到内存中,加速后续的读取速度

3.在实际情况中,大部分的 ConsumeQueue能够被全部读入内存,所以这个中间结构的操作速度很快, 可以认为是内存读取的速度

commitlog文件

  • 存放该broke所有topic的消息
  • 默认1G大小
  • 以偏移量为文件名,当一个文件写满时则创建新文件,这样的设计主要是方便根据消息的物理偏移量,快速定位到消息所在的物理文件
  • 一个消息存储单元是不定长的
  • 顺序写但是支持随机读

消息单元的存储结构

下面的表格说明了,每个消息体不是定长的,会存储消息的哪些内容,包括物理偏移量、consumeQueue的偏移量、消息体等信息

md 顺序 字段名 说明 1 totalSize(4Byte) 消息大小 2 magicCode(4) 设置为daa320a7 (这个不太明白) 3 bodyCRC(4) 当broker重启recover时会校验 4 queueId(4) 消息对应的consumeQueueId 5 flag(4) rocketmq不做处理,只存储后透传 6 queueOffset(8) 消息在consumeQueue中的偏移量 7 physicalOffset(8) 消息在commitlog中的偏移量 8 sysFlg(4) 事务类型标识 9 bronTimestamp(8) 消息产生端(producer)的时间戳 10 bronHost(8) 消息产生端(producer)地址(address:port) 11 storeTimestamp(8) 消息在broker存储时间 12 storeHostAddress(8) 消息存储到broker的地址(address:port) 13 reconsumeTimes(4) 消息重试次数 14 preparedTransactionOffset(8) 事务消息的物理偏移量 15 bodyLength(4) 消息长度,最长不超过4MB 16 body(body length Bytes) 消息体内容 17 topicLength(1) 主题长度,最长不超过255Byte 18 topic(topic length Bytes) 主题内容 19 propertiesLength(2) 消息属性长度,最长不超过65535Bytes 20 properties(消息属性长度个字节) 消息属性内容

NOT_TYPE/PREPARED_TYPE/COMMIT_TYPE/ROLLBACK_TYPE

consumequeue文件

  • 按topic和queueId纬度分别存储消息commitLogOffset、size、tagHashCode
  • 以偏移量为文件名
  • 一个存储单元是20个字节的定长的
  • 顺序读顺序写
  • 每个ConsumeQueue文件大小约5.72M

每个Topic下的每个MessageQueue都有一个对应的ConsumeQueue文件 该结构对应于消费者逻辑队列,为什么要将一个topic抽象出很多的queue呢?

这样的话,对集群模式更有好处,可以使多个消费者共同消费,而不用上锁。

消息单元的存储结构

| 顺序 | 字段名 | 说明 | | -- | ----------- | ------------- | | 1 | offset(8) | commitlog的偏移量 | | 2 | size(4) | commitlog消息大小 | | 3 | tagHashCode | tag的哈希值 |

index索引文件

  • 以时间作为文件名
  • 一个index存储单元是20个字节定长的

索引文件(Index)提供消息检索的能力,主要在问题排查和数据统计等场景应用

存储单元的结构

| 顺序 | 字段名 | 说明 | | -- | ------------- | ---------------- | | 1 | keyHash(4) | key的hashcode | | 2 | phyOffset(8) | commitLog真实的物理位移 | | 3 | timeOffset(4) | 时间偏移量 | | 4 | slotValue(4) | 下一个记录的slot值 |

消息存储源码解析

commitLog写入

参考:【RocketMQ源码学习】消息存储机制

DefaultMessageStore#putMessage

在RocketMQ的Broker启动时,会初始化一个核心组件messageStore.start();这个组件作为消息的存储组件,负责接受Produce发来的消息并保存到commitLog文件中,这个组件最终会调用DefaultMessageStore类中的putMessage()方法,这个方法是消息存储的核心!

java // DefaultMessageStore#putMessage public PutMessageResult putMessage(MessageExtBrokerInner msg) {    // 判断该服务是否shutdown,不可用直接返回【代码省略】    // 判断broke的角色,如果是从节点直接返回【代码省略】    // 判断runningFlags是否是可写状态,不可写直接返回,可写把printTimes设为0【代码省略】    // 判断topic名字是否大于byte字节127, 大于则直接返回【代码省略】    // 判断msg中properties属性长度是否大于short最大长度32767,大于则直接返回【代码省略】 ​    if (this.isOSPageCacheBusy()) { // 判断操作系统页写入是否繁忙        return new PutMessageResult(PutMessageStatus.OS_PAGECACHE_BUSY, null);   } ​    long beginTime = this.getSystemClock().now();    PutMessageResult result = this.commitLog.putMessage(msg);   // $2 查看下方代码,写msg核心 ​    long elapsedTime = this.getSystemClock().now() - beginTime;    if (elapsedTime > 500) {        log.warn("putMessage not in lock elapsed time(ms)={}, bodyLength={}", elapsedTime, msg.getBody().length);   }    // 记录写commitlog时间,大于最大时间则设置为这个最新的时间    this.storeStatsService.setPutMessageEntireTimeMax(elapsedTime); ​    if (null == result || !result.isOk()) {        // 记录写commitlog 失败次数        this.storeStatsService.getPutMessageFailedTimes().incrementAndGet();   } ​    return result; }

commitLog.putMessage

在方法内部又会调用commitLog.putMessage(msg)方法,如下:

```java public PutMessageResult putMessage(final MessageExtBrokerInner msg) {    // Set the storage time    msg.setStoreTimestamp(System.currentTimeMillis());    // Set the message body BODY CRC (consider the most appropriate setting    // on the client)    msg.setBodyCRC(UtilAll.crc32(msg.getBody()));    // Back to Results    AppendMessageResult result = null; ​    StoreStatsService storeStatsService = this.defaultMessageStore.getStoreStatsService(); ​    String topic = msg.getTopic();    int queueId = msg.getQueueId(); //获取消息的事务类型    final int tranType = MessageSysFlag.getTransactionValue(msg.getSysFlag());  // $1    if (tranType == MessageSysFlag.TRANSACTIONNOTTYPE        //对于事务消息中UNKNOW、COMMIT消息,处理topic和queueId,        //同时备份realtopic,realqueueId        || tranType == MessageSysFlag.TRANSACTIONCOMMITTYPE) { // $2        // Delay Delivery        if (msg.getDelayTimeLevel() > 0) {            if (msg.getDelayTimeLevel() > this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel()) {                msg.setDelayTimeLevel(this.defaultMessageStore.getScheduleMessageService().getMaxDelayLevel());           } ​            topic = ScheduleMessageService.SCHEDULETOPIC;            queueId = ScheduleMessageService.delayLevel2QueueId(msg.getDelayTimeLevel()); ​            // Backup real topic, queueId            MessageAccessor.putProperty(msg, MessageConst.PROPERTYREALTOPIC, msg.getTopic());            MessageAccessor.putProperty(msg, MessageConst.PROPERTYREALQUEUEID, String.valueOf(msg.getQueueId()));            msg.setPropertiesString(MessageDecoder.messageProperties2String(msg.getProperties())); ​            msg.setTopic(topic);            msg.setQueueId(queueId);       }   } ​    long elapsedTimeInLock = 0;    MappedFile unlockMappedFile = null;    //获取最新的mappedFile文件,有可能为空    MappedFile mappedFile = this.mappedFileQueue.getLastMappedFile();   // $3

   //给写mappedFile加锁,默认使用的是自旋锁PutMessageSpinLock    //AtomicBoolean putMessageSpinLock = new AtomicBoolean(true);    //死循环加锁: this.putMessageSpinLock.compareAndSet(true, false);    //解锁: this.putMessageSpinLock.compareAndSet(false, true);    putMessageLock.lock(); //spin or ReentrantLock ,depending on store config // $4    try {        long beginLockTimestamp = this.defaultMessageStore.getSystemClock().now();        this.beginTimeInLock = beginLockTimestamp;

       msg.setStoreTimestamp(beginLockTimestamp); //mappedFile为空时创建mappedFile文件, 创建的mappedFile文件offset为0        //文件名是文件大小        if (null == mappedFile || mappedFile.isFull()) {    // $5            mappedFile = this.mappedFileQueue.getLastMappedFile(0);       }        if (null == mappedFile) {            log.error("create mapped file1 error");            beginTimeInLock = 0;            return new PutMessageResult               (PutMessageStatus.CREATEMAPEDFILEFAILED, null);       } //在mappedFile中append消息        result = mappedFile.appendMessage(msg, this.appendMessageCallback); // $6                //转换写入结果        switch (result.getStatus()) {   // $7            //写入成功直接break            case PUTOK:                break;            //文件剩下的空间不够写了,重新创建一个mappedFile文件, 重新写消息            case ENDOFFILE:                  unlockMappedFile = mappedFile;                mappedFile = this.mappedFileQueue.getLastMappedFile(0);                if (null == mappedFile) {                      log.error("create mapped file2 error");                    beginTimeInLock = 0;                    return new PutMessageResult                       (PutMessageStatus.CREATEMAPEDFILEFAILED, result);               }                result = mappedFile.appendMessage(msg, this.appendMessageCallback);                break;            //msg超过大小统一返回MESSAGEILLEGAL            case MESSAGESIZEEXCEEDED:            //properties超出大小统一返回MESSAGEILLEGAL            case PROPERTIESSIZEEXCEEDED:                beginTimeInLock = 0;                return new PutMessageResult(PutMessageStatus.MESSAGEILLEGAL, result);            //未知错误,返回错误类型            case UNKNOWNERROR:                beginTimeInLock = 0;                return new PutMessageResult(PutMessageStatus.UNKNOWNERROR, result);            default:                beginTimeInLock = 0;                return new PutMessageResult(PutMessageStatus.UNKNOWNERROR, result);       } ​        elapsedTimeInLock = this.defaultMessageStore           .getSystemClock().now() - beginLockTimestamp;        beginTimeInLock = 0;   } finally {        //解锁        putMessageLock.unlock();   } ​    if (elapsedTimeInLock > 500) {        log.warn("[NOTIFYME]putMessage in lock cost time(ms)={}, bodyLength={} AppendMessageResult={}", elapsedTimeInLock, msg.getBody().length, result);   } ​    if (null != unlockMappedFile && this.defaultMessageStore.getMessageStoreConfig().isWarmMapedFileEnable()) {        this.defaultMessageStore.unlockMappedFile(unlockMappedFile);   } ​    PutMessageResult putMessageResult = new PutMessageResult(PutMessageStatus.PUTOK, result); ​    // Statistics    storeStatsService.getSinglePutMessageTopicTimesTotal(msg.getTopic()).incrementAndGet();    storeStatsService.getSinglePutMessageTopicSizeTotal(topic).addAndGet(result.getWroteBytes()); //执行刷盘    handleDiskFlush(result, putMessageResult, msg); // $8    //执行主从同步    handleHA(result, putMessageResult, msg);        // $9 ​    return putMessageResult; } ```

进入commitLog类中的putMessage()方法,方法中先对延时消息进行处理。

然后拿到虚拟内存中的文件(使用零拷贝实现),使用顺序写入的方式把消息追加到虚拟内存里,

在追加时使用lock保证同时只有一个线程往OScache内存写入消息!

mappedFile.appendMessage方法中是真正的写入逻辑

进入mappedFile.appendMessage方法中看一下具体的写入逻辑:就是包装消息的各种附加信息,例如msgId、offset等等,并把这些信息一并写入虚拟内存

由于CommitLog文件有1G的大小限制,当虚拟内存中的CommitLog被写满时,会创建一个新CommitLog文件继续写入。写入的只是虚拟内存,还要进行文件刷盘和主从同步

分发ConsumeQueue和IndexFile

Broker启动时会启动一个消息存储的核心组件messageStore。当CommitLog写入一条消息后,在DefaultMessageStore的start方法中,会启动一个后台线程reputMessageService每隔1毫秒就会去拉取CommitLog中最新更新的一批消息,然后分别转发到ComsumeQueue和IndexFile里去。

过期文件删除

默认情况下, Broker会启动后台线程,每60秒,检查CommitLog、ConsumeQueue文件。然后对超过72小时的数据进行删除。也就是说,默认情况下, RocketMQ只会保存3天内的数据。这个时间可以通过fileReservedTime来配置。注意删除时,并不会检查消息是否被消费了。

刷盘机制

我们之前简单提过一次,写入CommitLog的数据进入到MappedFile映射的一块内存里之后,后续会执行刷盘策略 比如是同步刷盘还是异步刷盘,如果是同步刷盘,那么此时就会直接把内存里的数据写入磁盘文件,如果是异步刷盘,那么就是过一段时间之后,再把数据刷入磁盘文件里去 那么今天我们来看看底层到底是如何执行不同的刷盘策略的。 大家应该还记得之前我们说过,往CommitLog里写数的时候,是调用的CommitLog类的putMessage0这个方法 没错的,其实在这个方法的末尾有两行代码,很关键的,大家看一下下面的源码片段.

大家会发现在末尾有两个方法调用,一个是handleDishFlush0,一个是handleHA0 顾名思义,一个就是用于决定如何进行刷盘的,一个是用于决定如何把消息同步给Slave Broker的。 关于消息如何同步给Slave Broker,这个我们就不看了,因为涉及到Broker高可用机制,这里展开说就太多了,其实大家有兴趣可以自己慢慢去研究,我们这里主要就是讲解一些RocketMQ的核心源码原理。 所以我们重点进入到handleDiskFlush0方法里去,看看他是如何处理刷盘的。

1688782236175.png

刷盘即存盘,刷盘机制是指生产者生产消息到rocketMQ后存入硬盘的方式,RocketMQ需要将消息存储到磁盘上,这样才能保证断电后消息不会丢失。同时这样才可以让存储的消息量可以超出内存的限制。RocketMQ为了提高性能,会尽量保证磁盘的顺序写。消息在写入磁盘时,有两种写磁盘的方式。

同步刷盘:只有在消息真正持久化至磁盘后,RocketMQ的Broker端才会真正地返回给Producer端一个成功的ACK响应。同步刷盘对MQ消息可靠性来说是一种不错的保障,但是性能上会有较大影响,一般适用于金融业务应用领域。

异步刷盘:能够充分利用OS的PageCache的优势,只要消息写入PageCache即可将成功的ACK返回给Producer端。消息刷盘采用后台异步线程提交的方式进行,降低了读写延迟,提高了MQ的性能和吞吐量。

异步和同步刷盘的区别在于,异步刷盘时,主线程并不会阻塞,在将刷盘线程唤醒后,就会继续往下执行。

上面代码我们就看的很清晰了,同步刷盘的策略是如何处理的.

1688782290592.png

其实上面就是构建了一个GroupCommitRequest,然后提交给了GroupCommitService去进行处理,然后调用request.waitForFlush0方法等待同步刷盘成功 万一刷盘失败了,就打印日志。具体剧盘是由GroupCommitService执行的,他的doCommit0方法最终会执行同步刷盘的逻辑,里面有如下代码。

1688782335614.png

上面那行代码一层一层调用下去,最终刷盘其实是靠的MappedByteBuffer的force0方法,如下所示

image.png

这个MappedByteBuffer就是JDK NIO包下的API,他的force0方法就是强追把你写入内存的数据刷入到磁盘文件里去,到此就是同步刷盘成功了 那么如果是异步刷盘呢? 我们先看CommitLog.handleDiskFlush里的的代码片段

image.png

其实这里就是唤醒了一个flushCommitLogService组件,那么他是什么呢?

FlushCommitLogService其实是一个线程,他是个抽象父类,他的子类是CommitRealTimeService,所以真正唤醒的是他的子类代表的线程。

1688782459965.png

具体在子类线程的run0方法里就有定时刷新的逻辑,这里就不赘述了。

其实简单来说,就是每隔一定时间执行一次刷盘,最大间隔是10s,所以一且执行异步刷盘,那么最多就是10秒就会执行一次刷盘。

好了,到此为止,我们把Commitlog的同步刷盘和异步刷盘两种策略的核心源码也讲解完了。我们主要是讲解的核心 源码,而源码里很多细节不可能一行一行进行分析,大家可以顺着文中的思路继续探究

主从复制

如果Broker以一个集群的方式部署,会有一个master节点和多个slave节点,消息需要从Master复制到Slave上。而消息复制的方式分为同步复制和异步复制。

同步复制: 同步复制是等Master和Slave都写入消息成功后才反馈给客户端写入成功的状态。在同步复制下,如果Master节点故障,Slave上有全部的数据备份,这样容易恢复数据。但是同步复制会增大数据写入的延迟,降低系统的吞吐量。

异步复制: 异步复制是只要master写入消息成功,就反馈给客户端写入成功的状态。然后再异步的将消息复制给Slave节点。在异步复制下,系统拥有较低的延迟和较高的吞吐量。但是如果master节点故障,而有些数据没有完成复制,就会造成数据丢失。

配置方式如下:

image.png

参考链接:https://blog.csdn.net/qq_45076180/article/details/113806763

mq消息存储相关链接

深入研究一下Broker是如何持久化存储消息

32张图带你解决RocketMQ所有场景问题

putMessage为什么要加锁

image.png

broker处理消息commit时加锁应该使用自旋锁还是重入锁

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/36537.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

哈达玛矩阵乘法

哈达玛矩阵乘法 作者: 赵晓鹏时间限制: 1S章节: 递归与分治 输入说明 : 见问题描述。 输出说明 : 见问题描述。 输入范例 : 1 4 -6 输出范例 : -2 10 #include <iostream> #include <vector> using namespace std; vector<int>res; void cal(int len…

SpringBoot2+Vue2实战(十六)vue集成视频播放组件

修改文件上传大小限制 servlet:multipart:max-file-size: 100MBmax-request-size: 100MB Video.vue <template><div style"padding: 10px"><el-card><div v-for"item in videos" :key"item.id"style"margin: 10px 0…

8266使用巴法云OTA

为了使用方便把OTA封装一下为以下类 #include "ESP8266HTTPUpdate.h"class OTA { private:ESP8266HTTPUpdate httpUpdate;// using HTTPUpdateStartCB std::function<void()>;void OnStartCB(){Serial.println("开始OTA升级");}// using HTTPUpdat…

OpenCV图像金字塔pyrDown下采样

#include <opencv2/opencv.hpp> #include <opencv2/imgproc/imgproc.hpp>using namespace cv;int main() {// Load the original imageMat srcImage

Jina AI 受邀出席 WAIC 2023「科技无障碍」论坛,与行业专家共话 AI 普惠未来

7 月 6 日&#xff0c;2023 世界人工智能大会&#xff08;WAIC&#xff09;在上海世博中心及世博展览馆开幕&#xff0c;并在浦东张江、徐汇西岸设分会场&#xff0c;同步在闵行等产业集聚区开展同期活动。本届大会由上海市人民政府和国家发改委、工信部、科技部、国家网信办、…

【群智能算法】猎人猎物优化算法 HPO算法【Matlab代码#48】

文章目录 【获取资源请见文章第4节&#xff1a;资源获取】1. 猎人猎物优化算法&#xff08;HPO&#xff09;2. 部分代码展示3. 仿真结果展示4. 资源获取说明 【获取资源请见文章第4节&#xff1a;资源获取】 1. 猎人猎物优化算法&#xff08;HPO&#xff09; 猎人猎物优化算法…

【小沐学C++】libcurl实现HTTP/HTTPS请求

文章目录 1、简介2、下载和编译2.1 下载2.2 编译2.3 使用 3、命令行测试3.1 获取文件头Headers3.2 请求内容Request Content3.3 响应内容Response Content3.4 GET请求3.5 POST请求3.6 其他 4、代码测试3.1 simple.c3.2 url2file.c3.3 simplepost.c3.4 resolve.c3.5 progressfun…

Java语言程序设计试卷6套

目录 Java语言程序设计试卷1 一、单项选择题 二、多项选择题 三、判断题 Java语言程序设计试卷2 一、单项选择题 二、多项选择题 三、判断题 Java语言程序设计试卷3 一、单项选择题 二、多项选择题 三、判断题 Java语言程序设计试卷4 一、单项选择题 二、多项选…

PROFINET转ETHERNET/IP网关西门子通讯协议profinet

大家好&#xff0c;今天我们来聊一款令人兴奋的产品——远创智控YC-PN-EIP&#xff01;它是一款自主研发的 PROFINET 从站功能的通讯网关&#xff0c;可以将 PROFINET网络和ETHERNET/IP 网络连接起来&#xff0c;实现数据传输和交换。但这只是它的基础功能&#xff0c;它还有哪…

HTTP与HTTPS

HTTP与HTTPS介绍 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息&#xff0c;HTTP协议以明文方式发送内容&#xff0c;不提供任何方式的数据加密&#xff0c;如果攻击者截取了Web浏览器和网站服务器之间的传输报文&#xff0c;就可以直接读懂其中的信息&…

【面试题27】Redis中的connect和pconnect如何使用,有什么区别

文章目录 一、背景二、connect函数三、pconnect函数四、区别和使用场景五、总结 一、背景 本文已收录于PHP全栈系列专栏&#xff1a;PHP面试专区。 计划将全覆盖PHP开发领域所有的面试题&#xff0c;对标资深工程师/架构师序列&#xff0c;欢迎大家提前关注锁定。 Redis是一个开…

协议逆向工程(图

协议逆向工程流程图 协议状态机推断的一般示例 状态机方法时间轴

Acwing.859 Kruskal算法求最小生成树(Kruskal算法)

题目 给定一个n个点m条边的无向图&#xff0c;图中可能存在重边和自环&#xff0c;边权可能为负数。 求最小生成树的树边权重之和&#xff0c;如果最小生成树不存在则输出impossible。 给定一张边带权的无向图G(V,E)&#xff0c;其中V表示图中点的集合&#xff0c;E表示图中边…

全网首发,Python解决某象滑动还原验证码100%还原

与一般的滑动验证码不同,某象的滑动还原验证码是将图像上下两块分割,然后在随机一块往右移动,将两块拼图移动成完整的图像才算成功,事实上,解决这类验证码比普通的验证码还要简单 数据集: 我随机采集了某象任意张数据集,将其标注好,top和down代表的是原图中上面还是下面…

嵌入式开发之串口通讯

串口通信(Serial Communication)&#xff0c; 是指外设和计算机间&#xff0c;通过数据信号线 、地线、控制线等&#xff0c;按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少&#xff0c;在远距离通信中可以节约通信成本&#xff0c;但其传输速度比并行传输低&…

前后端实现导出导入功能

目录 导出 1.后端代码 &#xff08;1&#xff09;相关依赖 &#xff08;2&#xff09;自定义实体类 &#xff08;3&#xff09;写一个查询方法list &#xff08;4&#xff09;写导出接口 2.前端代码 3.效果示例 导入 1.后端代码 &#xff08;1&#xff09;写导入接口 …

用 Nginx 禁止国外 IP 访问我的网站...

先来说说为啥要写这篇文章&#xff0c;之前看了下 Nginx 的访问日志&#xff0c;发现每天有好多国外的 IP 地址来访问我的网站&#xff0c;并且访问的内容基本上都是恶意的。因此我决定禁止国外 IP 来访问我的网站。 想要实现这个功能有很多方法&#xff0c;下面我就来介绍基于…

OSPFv2基础03_综合实验

目录 1.创建OSPF进程 2.创建OSPF区域 3.使能OSPF 4.创建虚连接&#xff08;可选&#xff09; 5.OSPF常用命令 6.实验配置步骤 7.实验效果 1.创建OSPF进程 OSPF是一个支持多进程的动态路由协议&#xff0c;OSPF多进程可以在同一台路由器上运行多个不同的OSPF进程&#x…

JDK,JRE,JVM的区别

1.JVM JVM&#xff0c;也叫java虚拟机&#xff0c;用来运行字节码文件&#xff0c;可将字节码翻译为机器码&#xff0c;JVM是实现java跨平台的关键&#xff0c;可以让相同的java代码在不同的操作系统上运行出相同的结果。 2.JRE JRE&#xff0c;也叫java运行时环境&#xff…

医疗金融法律大模型:从ChatDoctor到FinBERT/FinGPT/BloombergGPT、ChatLaw/LawGPT_zh

第一部分 各种医疗类ChatGPT&#xff1a;或中英文数据微调LLaMA、或中文数据微调ChatGLM 1.1 基于LLaMA微调的国内外医疗问答模型 1.1.1 ChatDoctor&#xff1a;通过self-instruct技术提示API的数据和医患对话数据集微调LLaMA Github上有一个基于LLaMA模型的医疗微调模型&am…