银行数据仓库体系实践(18)--数据应用之信用风险建模

信用风险

        银行的经营风险的机构,那在第15节也提到了巴塞尔新资本协议对于银行风险的计量和监管要求,其中信用风险是银行经营的主要风险之一,它的管理好坏直接影响到银行的经营利润和稳定经营。信用风险是指交易对手未能履行约定契约中的义务而给银行造成经济损失的风险。典型的表现形式包括借款人发生违约或信用等级下降。借款人因各种原因未能及时、足额偿还债务/银行贷款、未能履行合同义务而发生违约时,债权人或银行必将因为未能得到预期的收益而承担财务上的损失。

        那如何来表示某个交易对手的信用情况呢,一般使用信用等级或信用评分来来表示,等级越低或评分越低,发生违约的概率会增加。这个信用评分主要应用在客户的贷前和贷后管理中,贷前是指客户贷款申请阶段,银行受理客户贷款申请时会根据客户提交的信息、人行征信、其它数据源按一定的规则计算出一个违约概率和风险评分或信用等级。再根据这个评分或评级来确定客户的授信额度和利率。计算出的评分或评级越高,违约概率越低,比如在进行个人贷前评分时主要关注以下5方面:

        (1)People:贷款人状况,包括历史还款表现、当前负债情况、资金饥渴度等;

        (2)Payment:还款来源,如基本收入、资产水平、月收支负债比、无担保总负债等;       

        (3)Purpose:资金用途,如消费、买房,需要规避贷款资金用于投资或投机性质较高领域,如股票和数字货币;

        (4)Protection:债权确保,主要是看是否有抵押物或担保,需要看抵押物用途、质量、价格等关键要素;

        (5)Perspective:借款户展望,从地域、行业、人生阶段等考察稳定性及潜力;

        贷后是指客户借款后银行持续跟进客户的信用情况,如果发现信用评分降低或者某些指标达到风险预警指标的阈值,说明风险升高,则会进行冻结额度甚至提前进行贷款收回。特别是对于逾期客户。

风险建模步骤

       在进行信用评估时如何选择客户属性、如何确定评分或评级规则呢?这就需要进行风险建模,通过分析历史数据来确定哪些特征或指标对客户的违约相关性大,可以了解客户的还款能力以及还款意愿。并通过一定方法来建立评分和评级的规则。那风险建模主要分为以下步骤:

        (1)业务理解:主要评估当前现状、确定业务目标,选择建模方法,比如需要进行XX贷款产品的贷前评分模型并确定准入规则,建模方式比如为评分卡,评分应用为基于评分确定贷款准入规则以及额度和利率规则,同时需要确定分析数据的好客户和坏客户标准,如逾期90天以上为坏客户;

        (2)数据理解:首先需要准备建模的样本数据,如抽取近2年的获得类似产品的客户相关信息以及根据好客户和坏客户标准确定的结果。并针对业务数据进行业务含义理解、对数据进行收集、探索,了解每个变量的数据质量、缺失情况,数据分布等。比如对于客户在人行的征信数据、客户在银行的存款、理财等信息、以及客户申请填写的家庭、房产信息、外部获得的客户教育、司法等相关信息进行业务理解和数据分布、质量的探索,对缺失值比例过大的变量或准确性不高的变量进行剔除,同时也要确定对于样本数据中哪些数据进行建模,哪些数据进行验证。

        (3)数据准备:主要对数据进行预处理和指标加工,指标加工指基于基础数据进行指标加工,如最近1个月的征信查询次数,最近1年的逾期次数等,数据预处理主要工作包括对每一个变量进行数据清洗、缺失值处理、异常值处理、数据标准化等,主要目的是将获取的原始数据转变成可用于建模的结构化数据。

        比如对于连续变量,就是要寻找合适的切割点把变量分为几个区间段以使其具有最强的预测能力,也称为“分箱”。例如客户年龄就是连续变量,在这一步就是要研究分成几组、每组切割点在哪里预测能力是最强的。分箱的方法有等宽、等频、聚类(k-means)、卡方分箱法、单变量决策树算法(ID3、C4.5、CART)、IV最大化分箱法、best-ks分箱法等。如果是离散变量,每个变量值都有一定的预测能力,但是考虑到可能几个变量值有相近的预测能力,因此也需要进行分组。

        通过对变量的分割、分组和合并转换,分析每个变量对于结果的相关性,剔除掉预测能力较弱的变量,筛选出符合实际业务需求、具有较强预测能力的变量。检测变量预测能力的方法有:WOE(weight of Evidence) 、IV(informationvalue)等。

        (4)分析建模:即对于筛选出来的变量以及完成好坏定义的样本结果。放入模型进行拟合。如评分卡一般采用常见的逻辑回归的模型,PYTHON、SAS、R都有相关的函数实现模型拟合。以下是生成的评分卡的例子。

        (5)评估及报告:即通过验证样本对模型的预测进行校验。评估模型的准确性和稳健性,并得出分析报告。常用的方法有ROC曲线、lift提升指数、KS(Kolmogorov-Smirnov)曲线、GINI系数等。

        (6)应用:对模型进行实际部署和应用,如基于评分进行客户准入和产生额度,并在贷款系统进行模型部署,自动对申请客户进行评分。

        (7)监测:建立多种报表对模型的有效性、稳定性进行监测,如稳定性监控报表来比较新申请客户与开发样本客户的分值分布,不良贷款分析报表来评估不同分数段的不良贷款,并且与开发时的预测进行比较,监控客户信贷质量。随着时间的推移和环境变化,评分模型的预测力会减弱,所以需要持续监控并进行适当调整或重建。

        在信用风险建模中,目前评分卡建模还是主要的方式,除了申请评分(A卡(Application score card))还有B卡(Behavior score card)行为评分卡、C卡(Collection score card)催收评分卡。B卡主要进行客户贷后管理,如何进行风险预警,C卡进行催收管理,确定如何催收以及催收方式和时间点。信用风险模型中还有一个是反欺诈模型,它主要是识别假冒身份、虚假信息、批量薅羊毛等欺诈行为。随着机器学习和大数据的发展,其它的一些建模方式如决策树、深度神经网络也越来越多的应用到了风险建模中。

        信用风险模型是数据仓库支持的重要数据应用之一,在风险建模分析阶段,数据仓库是建模样本数据以及衍生指标加工的主要提供者,业务人员一般在自助分析平台进行数据分析和建模,模型建立完成并部署后,会基于数据仓库数据进行模型效果的监控。在贷后管理中,风险集市也会进行贷后指标的加工。另外风险模型以及预警中会经常使用到外部数据,这部分数据也是通过数据仓库进行对接、加工和存储。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/acumen_leo/article/details/99836511

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/364674.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

力扣热门100题刷题笔记 - 2.两数相加

力扣热门100题 - 2.两数相加 题目链接:2.两数相加 题目描述: 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。请你将两个数相加,并以相同形式返…

Python入门到精通(七)——Python文件操作

Python文件操作 一、文件的编码 二、文件的读取 1、操作汇总 2、model 常用的三种基础访问模式 三、文件的写入 四、文件的追加 五、综合案例 一、文件的编码 1、什么是编码? 编码就是一种规则集合,记录了内容和二进制间进行相互转换的逻辑。编…

强化学习 - Monte Carlo Tree Search (MCTS)

什么是机器学习 强化学习中的Monte Carlo Tree Search (MCTS) 是一种用于决策制定和搜索的算法,特别在不确定环境下表现出色。 1. 强化学习背景 在强化学习中,一个智能体通过与环境的交互学习,以便在某个任务上获得最大的奖励。MCTS是一种…

01- k8s基础网络知识 之 underlay与overlay网络

前言: 我们在学习k8s网络之前,必须要了解k8s网络相关的一些基础知识,比如什么是underlay网络、overlay网络等,只有把基础知识掌握之后,后续学习k8s网络的时候,一些知识点就不会再云里雾里了。 1 underlay与…

关于字符串处理

文章目录 关于字符串处理1、取字符串的长度2、跳过前面的字符3、取字符串右边的字符4、掐头去尾5、取倒数的范围6、删左留右7、删右留左8、查找替换9、大小写转换 关于字符串处理 1、取字符串的长度 [rootlocalhost ~]#strabcd1128 #定义变量 [rootlocalhost ~]#echo ${#str}…

React实现组件扩展机制

在java中,SPI机制是Java中提供的一种服务发现机制。同样,前端也很需要这种机制,这样可以做到组件可插拔,可替换,减少相互冗余。 快速使用 1.扩展点使用 通过使用Extension组件定义扩展点,通过name标记扩展…

血细胞分类项目

血细胞分类项目 数据集:血细胞分类数据集数据处理 dataset.py网络 net.py训练 train.py拿训练集的几张图进行预测 数据集:血细胞分类数据集 https://aistudio.baidu.com/datasetdetail/10278 数据处理 dataset.py from torchvision import transfor…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)

专属领域论文订阅 关注{晓理紫|小李子},每日更新论文,如感兴趣,请转发给有需要的同学,谢谢支持 如果你感觉对你有所帮助,请关注我,每日准时为你推送最新论文。 为了答谢各位网友的支持,从今日起…

Task05:PPO算法

本篇博客是本人参加Datawhale组队学习第五次任务的笔记 【教程地址】https://github.com/datawhalechina/joyrl-book 【强化学习库JoyRL】https://github.com/datawhalechina/joyrl/tree/main 【JoyRL开发周报】 https://datawhale.feishu.cn/docx/OM8fdsNl0o5omoxB5nXcyzsInGe…

【QT+QGIS跨平台编译】之二十二:【FontConfig+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文章目录 一、FontConfig介绍二、文件下载三、文件分析四、pro文件五、编译实践 一、FontConfig介绍 FontConfig 是一个用于配置和定制字体的库,广泛应用于基于X Window系统的操作系统中,尤其是在Linux和Unix-like系统中。它为应用程序提供了一种统一的…

C语言·贪吃蛇游戏(上)

1. 游戏任务 使用C语言在Windows环境的控制台中模拟实现小游戏贪吃蛇 游戏中要包含以下功能: 1. 贪吃蛇地图绘制 2. 贪吃蛇上下左右移动和吃食物 3. 蛇撞墙,或撞到自身死亡 4. 计算得分 5. 蛇身加速、减速 6. 暂停游戏 2. Win32 API 介绍 Windows是一种多…

【Jenkins】配置及使用|参数化|邮件|源码|报表|乱码

目录 一、Jenkins 二、Jenkins环境搭建 1、下载所需的软件包 2、部署步骤 3、其他 三、Jenkins全局设置 (一)Manage Jenkins——Tools系统管理->全局工具配置分别配置JDK、Maven、Allure、Git,可以配置路径或者直接选择版本安装 1…

网络流的认识

网络流的认识 什么是流网络 网络(network)是指一个特殊的有向图 G ( V , E ) G (V,E) G(V,E),其与一般有向图的不同之处在于有容量和源汇点,不考虑反向边。 其中,我们有以下变量来方便表示: S S S&…

2024美赛C题保姆级分析完整思路代码数据教学

2024美国大学生数学建模竞赛C题保姆级分析完整思路代码数据教学 C题 Momentum in Tennis 网球中的动量 在2023年温布尔登男单决赛中,20岁的西班牙新星卡洛斯阿尔卡拉兹击败了36岁的诺瓦克德约科维奇。这是德约科维奇自2013年以来在温布尔登的首次失利,也…

SwiftUI 动画入门之二:几何特效动画(GeometryEffect)

概览 在上一篇博文 SwiftUI 动画入门之一:路径动画(Path Animations)中,我们讨论了如何打造折线图(LinesGrap)形状上的路径动画。 而在本篇博文中,我们在前篇实现基础之上通过 GeometryEffect 特效为任意路径动画加上了活泼可爱的“小尾巴”。这是怎么做到的呢? 在本…

格式化内存卡后,如何找回丢失的监控视频?

随着摄像头的应用越来越广泛,很多监控摄像头采用了内存卡作为存储介质,方便用户存储和查看摄像头拍摄的视频文件。然而,由于各种原因,监控摄像头的内存卡有时会被意外格式化导致重要数据的丢失,给用户带来诸多困扰。 那…

有色金属矿山采选智能工厂数字孪生可视化,推进矿采选业数字化转型

有色金属矿山采选智能工厂数字孪生可视化,推进矿采选业数字化转型。随着科技的不断发展,数字化转型已经成为各行各业发展的必然趋势。有色金属矿采选业作为传统工业的重要组成部分,也面临着数字化转型的挑战。为了更好地推进有色金属矿采选业…

C语言字符、字符串

一、c语言字符串的本质 1、char类型数组 c语言没有专门用来存储字符串的变量类型,字符串都是存储在char类型的数组中,char类型的连续空间中每个存储单元存储一个字符,数组末尾以’\0’结束,标志字符串的结束。\0’是空字符&…

开源编辑器:ONLYOFFICE文档又更新了!

办公软件 ONLYOFFICE文档最新版本 8.0 现已发布:PDF 表单、RTL、单变量求解、图表向导、插件界面设计等更新。 什么是 ONLYOFFICE 文档 ONLYOFFICE 文档是一套功能强大的文档编辑器,支持编辑处理文本文档、电子表格、演示文稿、可填写的表单、PDF&#…

大语言模型之LlaMA系列- LlaMA 2及LLaMA2_chat(上)

LlaMA 2是一个经过预训练与微调的基于自回归的transformer的LLMs,参数从7B至70B。同期推出的Llama 2-Chat是Llama 2专门为对话领域微调的模型。 在许多开放的基准测试中Llama 2-Chat优于其他开源的聊天模型,此外Llama 2-Chat还做了可用性与安全性评估。 …