TensorFlow2实战-系列教程4:数据增强

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

猫狗识别1
数据增强
猫狗识别2------数据增强
猫狗识别3------迁移学习

对于图像数据,将其进行翻转、放缩、平移、旋转操作就可以得到一组新的数据:
在这里插入图片描述

1、展示输入输出

import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline
from keras.preprocessing import image
import keras.backend as K
import os
import glob
import numpy as np
def print_result(path):
    name_list = glob.glob(path)
    fig = plt.figure(figsize=(12,16))
    for i in range(3):
        img = Image.open(name_list[i])
        sub_img = fig.add_subplot(131+i)
        sub_img.imshow(img)
img_path = './img/superman/*'
in_path = './img/'
out_path = './output/'
name_list = glob.glob(img_path)
print(name_list)
print_result(img_path)
  1. img_path 就是存放3张图像数据的路径,in_path 、out_path 暂时没用到
  2. name_list 查看一下三张数据的路径字符信息
  3. print_result就是一个专门用来打印3张图像的函数

打印结果:

[‘./img/superman\00000008.jpg’,
‘./img/superman\00000009.jpg’,
‘./img/superman\00000010.jpg’]

在这里插入图片描述

2、调整图像大小

datagen = image.ImageDataGenerator()
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False,  save_to_dir=out_path+'resize',
                                  save_prefix='gen', target_size=(224, 224))
  1. 创建一个数据增强的实例
  2. 指定参数加载图像数据
  3. save_to_dir=out_path+‘resize’,用到了前面的输出路径
  4. 指定了target_size参数后图像都会被重置成这个尺寸
for i in range(3):
    gen_data.next()
print_result(out_path+'resize/*')

从数据生成器中获取数据,将图像打印出来
打印结果:
在这里插入图片描述

3、旋转图像

datagen = image.ImageDataGenerator(rotation_range=45)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rotation_range',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'rotation_range/*')
  1. 创建一个旋转的数据增强实例,
  2. 创建一个数据增强实例,实际上就是直接加载数据
  3. 将加载的图像数据重置尺寸
  4. 将重置尺寸的图像转换成ndarray格式
  5. 将旋转数据增强应用到重置尺寸的图像数据中
  6. 使用数据增强生成器重新从目录加载数据
  7. 保存加载的数据
  8. 使用for循环:
  9. 生成并处理三个图像,由于设置了 save_to_dir,这些图像将被保存。
  10. 打印三个图像

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

4、平移变换

datagen = image.ImageDataGenerator(width_shift_range=0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'shift/*')

与3中不同的是,这段代码是进行平移变换进行数据增强,指定了平移变换的参数,width_shift_range=0.3,height_shift_range=0.3,这两个参数分别表示会在水平方向和垂直方向±30%的范围内随机移动

打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

datagen = image.ImageDataGenerator(width_shift_range=-0.3,height_shift_range=0.3)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'shift2',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'shift2/*')

由于是随机的,这两段代码完全一样,但是结果却不同
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

5、缩放

datagen = image.ImageDataGenerator(zoom_range=0.5)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'zoom',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'zoom/*')

这段代码与3中不同的就是,这里指定缩放参数来进行缩放数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.

在这里插入图片描述

6、channel_shift

datagen = image.ImageDataGenerator(channel_shift_range=15)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'channel',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'channel/*')

这段代码与3中不同的就是,这里指定通道偏移参数来进行通道偏移数据增强
打印结果:

Found 3 images belonging to 1 classes.
Found 3 images belonging to 1 classes.
在这里插入图片描述

7、水平翻转

datagen = image.ImageDataGenerator(horizontal_flip=True)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'horizontal',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'horizontal/*')

这段代码与3中不同的就是,这里指定水平翻转参数来进行水平翻转数据增强
在这里插入图片描述

8、rescale重新缩放

datagen = image.ImageDataGenerator(rescale= 1/255)
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'rescale',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'rescale/*')

这段代码与3中不同的就是,这里指定rescale重新缩放参数来进行rescale重新缩放数据增强
通常用于归一化图像数据。将图像像素值从 [0, 255] 缩放到 [0, 1] 范围,有助于模型的训练
在这里插入图片描述

9、填充方法

  • ‘constant’: kkkkkkkk|abcd|kkkkkkkk (cval=k)
  • ‘nearest’: aaaaaaaa|abcd|dddddddd
  • ‘reflect’: abcddcba|abcd|dcbaabcd
  • ‘wrap’: abcdabcd|abcd|abcdabcd
datagen = image.ImageDataGenerator(fill_mode='wrap', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'fill_mode',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'fill_mode/*')
  • fill_mode='wrap':当应用几何变换后,图像中可能会出现一些新的空白区域。fill_mode 定义了如何填充这些空白区域。在这种情况下,使用 'wrap' 模式,意味着空白区域将用图像边缘的像素“包裹”填充。
  • zoom_range=[4, 4]:这设置了图像缩放的范围。在这里,它被设置为在 4 倍范围内进行随机缩放。由于最小和最大缩放因子相同,这将导致所有图像都被放大 4 倍

用原图像填充,任何超出原始图像边界的区域将被图像的对边界像素填充
在这里插入图片描述

datagen = image.ImageDataGenerator(fill_mode='nearest', zoom_range=[4, 4])
gen = image.ImageDataGenerator()
data = gen.flow_from_directory(in_path, batch_size=1, class_mode=None, shuffle=True, target_size=(224, 224))
np_data = np.concatenate([data.next() for i in range(data.n)])
datagen.fit(np_data)
gen_data = datagen.flow_from_directory(in_path, batch_size=1, shuffle=False, save_to_dir=out_path+'nearest',save_prefix='gen', target_size=(224, 224))
for i in range(3):
    gen_data.next()
print_result(out_path+'nearest/*')

使用最近点填充,每个空白区域的像素将取其最近的非空白区域的像素值
在这里插入图片描述

猫狗识别1
数据增强
猫狗识别2------数据增强
猫狗识别3------迁移学习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/362898.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微信公众号在线客服源码系统,开发组合PHP+MySQL 带完整的安装代码包以及搭建教程

移动互联网的快速发展,微信公众号成为了企业与用户之间的重要沟通桥梁。为了满足企业对微信公众号在线客服的需求,小编给大家分享一款基于PHP和MySQL的微信公众号在线客服源码系统。这套系统能够帮助企业快速搭建自己的微信公众号在线客服平台&#xff0…

构建中国人自己的私人GPT—支持中文

上一篇已经讲解了如何构建自己的私人GPT,这一篇主要讲如何让GPT支持中文。 privateGPT 本地部署目前只支持基于llama.cpp 的 gguf格式模型,GGUF 是 llama.cpp 团队于 2023 年 8 月 21 日推出的一种新格式。它是 GGML 的替代品,llama.cpp 不再…

AVR 328pb定时器0基本介绍和使用

AVR 328pb定时器0基本介绍和使用 📌参考ATmega328PB文档.📍结合参考同架构lgt8f328p中文文档:http://www.prodesign.com.cn/wp-content/uploads/2023/03/LGT8FX8P_databook_v1.0.4.pdf 📗定时器0基本功能描述 两个独立的输出比较…

【Web前端实操21】商城官网_白色导航

今日份实现白色导航栏部分,也就是第三部分,效果如图中划线所示: 本次实现代码如之前的全局样式不再赘述,如有需要可以去我博客的Web前端实操19或者20自行查看。 本次主要更新mi.css和index.htm。 实现导航栏所需要的CSS样…

Handler 消息机制

1. 概述 Android 的消息机制主要是指 Handler 的运行机制,以及 Handler 所附带的 MessageQueue 和 Looper 的工作过程。 Handler、MessageQueue、Looper 这三者实际上是一个整体,只不过在开发过程中比较多地接触 Handler 而已。 Handler 的主要作用是将…

Redis单机-主从集群-哨兵集群-分片集群 搭建教程

Redis集群 本章是基于CentOS7下的Redis集群教程,包括: 单机安装RedisRedis主从Redis分片集群 1.单机安装Redis 首先需要安装Redis所需要的依赖: yum install -y gcc tclredis-6.2.4.tar.gz 然后将Redis安装包上传到虚拟机的任意目录&am…

Python编程实验一:流程控制结构

目录 一、实验目的与要求 二、实验内容 三、主要程序清单和程序运行结果 第1题 第2题 第3题 第4题 四、实验结果分析与体会 一、实验目的与要求 (1)通过本次实验,学生应掌握多分支语句 if …elif…else结构的用法; &…

丰富福利等你来拿!第七届世界智能大会·中国华录杯数据湖算法大赛开启招募!

由天津市委网信办、天津市工业和信息化局、天津市津南区人民政府主办,北京易华录信息技术股份有限公司、天津华易智诚科技发展有限公司承办的“第七届世界智能大会中国华录杯数据湖算法大赛”开启招募。 本次大赛紧紧围绕数据“收、存、治、用、易”为理念&#xf…

低码大前端 - 混合云集群部署 PagePlug

前情提要 老师之前布置了什么作业,完全忘了,本来觉得写作业可能也就一两个小时的事情,结果搞了半天,有一半的作业题目都没找到,mmp, 之前拖延症,搞到心态都炸了,今天不管怎么说都要搞定&#x…

Redis核心技术与实战【学习笔记】 - 9.如何避免单线程模型的阻塞

概述 Redis 被广泛应用的原因是因为它支持高性能访问。所以,我们要重视所有可能影响 Redis 性能的因素(如命令操作、系统配置、关键机制、硬件配置等)。 影响 Redis 性能的 5 大方面的潜在因素分别是: Redis 内部的阻塞式操作C…

测试大佬是怎么看待测试用例设计的

前言 最近干的最多的事情就是设计测试用例、评审测试用例了,于是我不禁又想到了一个经典的问题:如何设计出优秀的测试用例? 可能有些童鞋看到这个问题会有些不以为然,这有什么好想的?干个测试谁还不会设计测试用例&…

41、WEB攻防——通用漏洞XMLXXE无回显DTD实体伪协议代码审计

文章目录 XXE原理&探针&利用XXE读取文件XXE带外测试XXE实体引用XXE挖掘XXE修复 参考资料:CTF XXE XXE原理&探针&利用 XXE用到的重点知识是XML,XML被设计为传输和存储数据,XML文档结构包括XML声明、DTD文档类型定义&#xf…

XVC767AE102 3BHB007209R0102

XVC767AE102 3BHB007209R0102 XVC767AE102 3BHB007209R0102 GPS99808模块在汽车防盗系统中的应用 ... 详细介绍了 leadtek公司最新款oem模块gps9808在新型智能防盗系统中的 ... 定位模块、cpu控制模块、gps通信模块、传感器检测模块、声光报警模块、电源管理模块 ... 功能…

k8s之基础组件说明

前言 K8S,全称 Kubernetes,是一个用于管理容器的开源平台。它可以让用户更加方便地部署、扩展和管理容器化应用程序,并通过自动化的方式实现负载均衡、服务发现和自动弹性伸缩等功能。 具体来说,Kubernetes 可以将应用程序打包成…

sqli-labs-master靶场训练笔记(1-22|新手村)

2024.1.21 level-1 (单引号装饰) 先根据提示建立一个get请求 在尝试使用单个单引号测试,成功发现语句未闭合报错 然后反手一个 order by 得到数据库共3列,-- 后面加字母防止浏览器吃掉 -- 操作(有些会&#xff09…

全链路压测的关键点是什么?

全链路压测是一种重要的性能测试方法,用于评估应用程序或系统在真实生产环境下的性能表现。通过模拟真实用户行为和流量,全链路压测能够全面评估系统在不同负载下的稳定性和性能表现。本文将介绍全链路压测的关键点,以帮助企业更好地理解和应…

IT行业证书大揭秘:哪些证书含金量最高?

文章目录 📖 介绍 📖📒 证书 📒 📖 介绍 📖 在IT行业,有许多证书被认为是含金量高的,可以帮助个人在职业发展中取得重要的竞争优势。以下是一些IT行业中被认为含金量高的证书&#x…

Docker基础知识

1、什么是Docker?Docker解决了什么问题 一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。给部署带来了极大的困难。 所以引入了Docker Docker为了…

系统架构设计师-21年-下午答案

系统架构设计师-21年-下午答案 更多软考知识请访问 https://ruankao.blog.csdn.net/ 试题一必答,二、三、四、五题中任选两题作答 试题一 (25分) 说明 某公司拟开发一套机器学习应用开发平台,支持用户使用浏览器在线进行基于机器学习的智能应用开发…

ThreadX系列note-前言

什么是 Azure RTOS ThreadX Azure RTOS ThreadX 是 Microsoft 提供的高级工业级实时操作系统 (RTOS)。它是专门为深度嵌入式实时 IoT 应用程序设计的。 Azure RTOS ThreadX 的特性 Azure RTOS ThreadX 提供高级计划、通信、同步、计时器、内存管理和中断管理功能。此外&#…