Airflow原理浅析

⭐️ airflow基本原理

Apache Airflow 是一个开源的工作流自动化工具,它用于调度和管理复杂的数据工作流。Airflow 的原理基于有向无环图(DAG)的概念,它通过编写和组织任务的有向图来描述工作流程。
在这里插入图片描述

以下是 Apache Airflow 的一些关键原理:

1. 有向无环图 (DAG): Airflow 使用 DAG 来表示工作流程,其中每个节点表示一个任务,边表示任务之间的依赖关系。DAG 中的任务可以并行执行,但只有在其所有依赖项完成后才能运行。

2. 任务 (Task): 任务是工作流中的最小单位,代表一个可以执行的操作。任务可以是 Python 脚本、Shell 命令、数据库查询等。每个任务都定义了执行逻辑和依赖关系。

3. 调度器 (Scheduler): Airflow 的调度器负责按照 DAG 的定义调度任务的执行。调度器定期检查任务的依赖关系和执行时间,确保任务按照正确的顺序执行。

4. 执行器 (Executor): 执行器负责在工作节点上执行任务。Airflow 支持不同类型的执行器,如本地执行器、Celery 执行器等,以便在分布式环境中运行任务。

5. 元数据库 (Metadata Database): Airflow 使用元数据库来存储工作流的元数据,包括 DAG 的定义、任务的状态、执行历史等信息。这使得 Airflow 能够跟踪任务的状态和历史记录。

6. Web 服务器 (Web Server): Airflow 提供了一个 Web 服务器,用于用户界面和管理。通过 Web 界面,用户可以查看和监控 DAG、任务的执行状态,以及查看任务的日志等信息。

7. 调度器和执行器的分离: 为了支持分布式执行,Airflow 的调度器和执行器可以运行在不同的节点上。这样可以实现水平扩展,提高性能和可靠性。

总体来说,Airflow 的设计理念是通过有向无环图来描述复杂的工作流程,实现任务的调度和执行,并提供了丰富的功能和工具来管理、监控和扩展工作流。

⭐️ 分布式调度和分布式计算有什么区别

分布式调度和分布式计算是两个相关但不同的概念。它们在分布式系统中扮演不同的角色,解决不同的问题。

1. 分布式调度 (Distributed Scheduling):

定义: 分布式调度是指在一个分布式系统中协调和安排任务的执行。这包括确定任务的执行顺序、处理任务之间的依赖关系、以及将任务分配给可用的计算资源。

作用: 分布式调度的目标是有效地管理资源,确保任务按照正确的顺序和依赖关系执行,以提高整个系统的效率和性能。Apache Airflow 是一个常见的分布式调度工具,用于协调和调度复杂的工作流程。

2. 分布式计算 (Distributed Computing):

定义: 分布式计算是指将计算任务分解为多个子任务,并在分布式系统中的多个计算节点上并行执行这些子任务。每个节点可以独立地执行任务的一部分,最终的结果由所有节点的计算结果组合而成。

作用: 分布式计算旨在加速计算过程,通过并行化和分布化任务来处理大规模的数据或复杂的计算问题。Hadoop 和 Apache Spark 是常见的分布式计算框架,用于处理大规模数据集的分布式计算任务。

在简单的术语中,分布式调度更关注任务的协调和安排,确保任务按照正确的顺序执行,而分布式计算更关注任务的并行执行,以加速整体计算过程。然而,在实际应用中,这两个概念通常会结合使用,以构建高效的分布式系统,同时兼顾任务的调度和计算性能。
在这里插入图片描述

⭐️ airflow能进行分布式计算吗

Apache Airflow 主要是一个工作流自动化工具,其主要功能是调度和管理复杂的工作流程。虽然它本身并不提供分布式计算的能力,但可以与其他分布式计算框架集成,从而实现在分布式环境中执行任务。

在默认情况下,Apache Airflow 中的任务是在单个节点上执行的,即使使用 CeleryExecutor 也是如此。每个任务实例被分派到一个可用的 Celery Worker,但一个具体任务实例本身并不会在多个 Worker 上并行执行。

要想实现真正的分布式计算,可以在 Apache Airflow 的任务中调用分布式计算框架,比如 Apache Spark。这样,你可以使用 Airflow 来定义和调度工作流程,而分布式计算框架负责在集群中执行具体的计算任务。这种集成方式可以通过 Airflow 的任务(Operators)来实现,例如 SparkSubmitOperator 可以用于提交 Spark 任务。

示例代码片段可能如下所示(请注意,这仅仅是一个简化的示例):

from airflow import DAG
from airflow.operators.spark_submit_operator import SparkSubmitOperator
from datetime import datetime, timedelta

default_args = {
    'owner': 'airflow',
    'start_date': datetime(2022, 1, 1),
    'depends_on_past': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
}

dag = DAG(
    'my_spark_workflow',
    default_args=default_args,
    description='A simple Airflow DAG to submit Spark job',
    schedule_interval=timedelta(days=1),
)

spark_task = SparkSubmitOperator(
    task_id='submit_spark_job',
    conn_id='spark_default',  # Airflow connection to Spark cluster
    application='path/to/your/spark/job.py',
    dag=dag,
)

spark_task

在上述示例中,SparkSubmitOperator 用于在 Airflow 中提交 Spark 任务。在这种方式下,Airflow 负责任务的调度和工作流程的管理,而 Spark 负责实际的分布式计算任务。

请注意,Airflow 还可以与其他分布式计算框架集成,具体取决于你的需求和环境。

⭐️ workder的环境同步

在 Apache Airflow 中,每个任务(Task)都是由相应的执行器(Executor)执行的,而执行器负责具体的任务执行环境。如果某个 worker 没有配置或缺少必要的 Python 环境,可能会导致 Python 操作的执行问题。

以下是一些可能导致问题的情况:

  1. 缺少 Python 环境:

    如果某个 worker 没有安装任务需要的 Python 版本或相关依赖,执行器将无法在该节点上成功执行 Python 操作。确保所有的 worker 节点都配置有正确的 Python 环境和所需的依赖项。

  2. 虚拟环境和依赖项:

    如果任务需要在虚拟环境中执行或有特定的依赖项,确保这些环境和依赖项在每个 worker 节点上都得到了正确的安装。

  3. 可执行文件路径:

    某些任务可能需要调用特定的可执行文件或脚本,确保这些文件的路径在每个 worker 节点上都是可访问的。

  4. Airflow 配置:

    Airflow 的配置文件中可能包含一些关于 Python 环境和路径的设置,确保这些设置对所有的 worker 节点都是适用的。

  5. 日志和错误信息:

    当任务失败时,查看任务的日志和错误信息以获取更多详细信息。Airflow 的 Web 服务器提供了查看任务日志的界面,可以帮助你诊断和解决执行问题。

在配置 Airflow 时,确保所有的 worker 节点都能够满足任务执行的环境要求。在使用 CeleryExecutor 等分布式执行器时,确保 Celery Worker 节点也具备正确的环境配置。根据任务的性质和需求,可能需要在每个节点上进行额外的配置和安装操作。

笔者水平有限,若有不对的地方欢迎评论指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/362576.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

解决ModuleNotFoundError: No module named ‘pysqlite2‘

目录 一、问题描述 二、问题分析 三、解决方法 四、参考文章 一、问题描述: 新建conda编译环境。安装Jupyter后打不开,报错: 二、问题分析: 缺少sqlite3动态链接库 三、解决方法: SQLite Download Page 下载…

go语言socket编程

1.互联网分层模型 过程分析: 2.Socket图解 Socket是应用层与TCP/IP协议族通信的中间软件抽象层。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket后面,对用户来说只需要调用Socket规定的相关函数&a…

幻兽帕鲁服务器游戏怎么升级版本?

幻兽帕鲁服务器游戏怎么升级版本?自建幻兽帕鲁服务器进入Palworld游戏提示“您正尝试加入的比赛正在运行不兼容的游戏版本,请尝试升级游戏版本”什么原因?这是由于你的客户端和幻兽帕鲁服务器版本不匹配,如何解决?更新…

数学建模-多目标规划

例:求下列函数最大值 Matlab 程序: 若分开求解,即分别求出第一个函数和第二个函数的最大值,我们试一下。 第一个函数最大值(我们先求最小值) c[3 -2];A[2,3;2,1];b[18;10];Aeq[];beq[];vlb[0;0];vub[];[…

redis设计与实践的总结

Redis是一款高性能的Key-Value存储系统,它可以用作缓存、消息队列、计数器、排行榜等多种应用场景。在实际应用中,如何设计和使用Redis是非常关键的。本文将介绍Redis的设计原则和最佳实践,帮助您更好地利用Redis提高应用性能和可靠性。 ###…

kuboard-spray 导入离线资源包

下载镜像 # 1. 在一台可以联网的机器上执行 docker pull registry.cn-shanghai.aliyuncs.com/kuboard-spray/kuboard-spray-resource:spray-v2.18.0a-8_k8s-v1.23.9_v1.16-amd64 docker save registry.cn-shanghai.aliyuncs.com/kuboard-spray/kuboard-spray-resource:spray-v…

hbuilderx uniapp运行到真机控制台显示手机端调试基座版本号1.0.0,调用uni.share提示打包时未添加share模块

记录一个困扰了几天的一个蠢问题,发现真相的我又气又笑。 由于刚开始接触uniapp 移动端开发,有个需求需要使用uni.share API,但是我运行项目老提示打包时没配置share模块 我确实没在manifest内配置。网上搜了一些资料,但是我看官…

漏洞01-目录遍历漏洞/敏感信息泄露/URL重定向

目录遍历漏洞/敏感信息泄露/URL重定向 文章目录 目录遍历敏感信息泄露URL重定向 目录遍历 敏感信息泄露 于后台人员的疏忽或者不当的设计,导致不应该被前端用户看到的数据被轻易的访问到。 比如: ---通过访问url下的目录,可以直接列出目录下…

Python实现利用仅有像素级标注的json文件生成框标注的json文件,并存放到新文件夹

import json import os # create rectangle labels based on polygon labels, and store in a new folder def create_rectangle_shapes(polygon_shapes):rectangle_shapes []for polygon_shape in polygon_shapes:# 获取多边形的坐标点points polygon_shape[points]# 找到最…

springboot142新冠病毒密接者跟踪系统

新冠病毒密接者跟踪系统设计与实现 摘 要 信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲&#xff…

Flink实战五_状态机制

接上文:Flink实战四_TableAPI&SQL 在学习Flink的状态机制之前,我们需要理解什么是状态。回顾我们之前介绍的很多流计算的计算过程,有些计算方法,比如说我们之前多次使用的将stock.txt中的一行文本数据转换成Stock股票对象的ma…

Mongodb安装Linux

确定你的CentOS 版本 使用以下命令: /etc/centos-release下载Mongodb 解压tgz压缩包 创建data和log文件夹 , 确定你的文件夹访问权限 在log文件夹里面创建mongodb.log文件(这一步很重要 ! ! !) touch mongodb.log创建mongodb.conf文件 在你的mongodb文件夹下 vi mongo…

IDEA的properties默认编码是UTF-8但是不显示中文

问题描述 今天打开IDEA项目,发现messages_zh_CN.properties不显示中文了 但奇怪的是target下的文件就是展示的中文 而且我IDEA已经配置了编码格式是UTF-8了 使用nodepad打开源文件,也是展示编码格式是UTF-8 (打开target下的文件,…

数字存内计算与云边端具有广泛的应用场景深度剖析【根据中国移动研究院文献分析总结】

文章目录 背景数字存内计算技术研究端侧应用场景边侧应用场景云侧应用场景 总结参考文献: 背景 存内计算产品基于其不同的器件特性和计算方式,能够为云、边缘和端设备提供推理、训练等多种人工智能(AI)能力,从而提升运…

vue3/vue2中自定义指令不可输入小数点.

import { directive } from vueconst noDecimal {mounted(el) {el.addEventListener(keypress, (e) > {if (e.key .) {e.preventDefault() }})} }// 使用自定义指令 directive(no-decimal, noDecimal)使用 标签上添加 v-no-decimal <el-input…

设计模式_备忘录模式_Memento

案例引入 游戏角色有攻击力和防御力&#xff0c;在大战Boss前保存自身的状态(攻击力和防御力)&#xff0c;当大战Boss后攻击力和防御力下降&#xff0c;可以从备忘录对象恢复到大战前的状态 传统设计方案 针对每一种角色&#xff0c;设计一个类来存储该角色的状态 【分析】…

如何使用 Supabase Auth 在您的应用程序中设置身份验证

在本文中&#xff0c;您将学习基本的关键概念&#xff0c;这些概念将帮助您掌握身份验证和授权的工作原理。 您将首先了解什么是身份验证和授权&#xff0c;然后了解如何使用 Supabase auth 在应用程序中实现身份验证。 &#xff08;本文内容参考&#xff1a;java567.com&…

【Linux取经路】进程控制——进程等待

文章目录 一、进程创建1.1 初识 fork 函数1.2 fork 函数返回值1.3 写时拷贝1.4 fork 的常规用法1.5 fork 调用失败的原因1.6 创建一批进程 二、进程终止2.1 进程退出场景2.2 strerror函数2.3 errno全局变量2.4 程序异常2.5 进程常见退出方法2.6 exit 函数2.7 _exit 函数和 exit…

mysql8安装基础操作(一)

一、下载mysql8.0 1.查看系统glibc版本 这里可以看到glibc版本为2.17&#xff0c;所以下载mysql8.0的版本时候尽量和glibc版本对应 [rootnode2 ~]# rpm -qa |grep -w glibc glibc-2.17-222.el7.x86_64 glibc-devel-2.17-222.el7.x86_64 glibc-common-2.17-222.el7.x86_64 gl…

【Tomcat与网络9】提高Tomcat启动速度的八大措施

本文我们来看一下如何对Tomcat进行调优&#xff0c;我们对于Tomcat的调优主要集中在三个方面&#xff1a;提高启动速度、提高系统稳定性和提高并发能力&#xff0c;后两者很多时候是相辅相成的&#xff0c;我们放在一起看。 Tomcat现在一般都嵌入在SpringBoot里&#xff0c;因…