机器学习复习(3)——分类神经网络与drop out

完整的神经网络

以分类任务为例,神经网络一般包括backbone和head(计算机视觉领域)

下面的BasicBlock不是一个标准的backbone,标准的应该是复杂的CNNs构成的

Classfier是一个标准的head,其中output_dim表示分类类别,一般写作num_classes

import torch  # 导入 torch 库
import torch.nn as nn  # 导入 torch 的神经网络模块
import torch.nn.functional as F  # 导入 torch 的函数式接口

# 定义一个基础的神经网络模块
class BasicBlock(nn.Module):  # 继承自 torch 的 Module 类
    def __init__(self, input_dim, output_dim):
        super(BasicBlock, self).__init__()  # 初始化父类

        # 构建一个序列模块,包含一个线性层和一个 ReLU 激活函数
        self.block = nn.Sequential(
# 线性层,输入维度为 input_dim,输出维度为 output_dim
            nn.Linear(input_dim, output_dim),  
            nn.ReLU(),  # ReLU 激活函数
        )

    def forward(self, x):
        x = self.block(x)  # 将输入数据 x 通过定义的序列模块
        return x  # 返回模块的输出


# 定义一个分类器神经网络
class Classifier(nn.Module):  # 继承自 torch 的 Module 类
    def __init__(self, input_dim, output_dim=41, hidden_layers=1, hidden_dim=256):
        super(Classifier, self).__init__()  # 初始化父类

        # 构建一个序列模块,包含若干个 BasicBlock 和一个线性输出层
        self.fc = nn.Sequential(
# 第一个 BasicBlock,将输入维度转换为隐藏层维度
            BasicBlock(input_dim, hidden_dim),  
# 根据 hidden_layers 数量添加多个 BasicBlock
            *[BasicBlock(hidden_dim, hidden_dim) for _ in range(hidden_layers)],  
# 线性输出层,将隐藏层维度转换为输出维度
            nn.Linear(hidden_dim, output_dim)  
        )

    def forward(self, x):
        x = self.fc(x)  # 将输入数据 x 通过定义的序列模块
        return x  # 返回模块的输出

对 *[BasicBlock(hidden_dim, hidden_dim) for _ in range(hidden_layers)]的一个补充解释,“*”代表解压列表,例如A=[a,b,c],那么f(*A)=f(a,b,c)

在这里的具体意义是“便于控制隐藏层数量”,而其中的"_"代表不希望在循环中使用变量,这是一种通用的惯例,表明循环的目的不是对每个元素进行操作,而是为了重复某个操作特定次数。如果hidden_layers=3,这里的等价含义就是BasicBlock(hidden_dim, hidden_dim),BasicBlock(hidden_dim, hidden_dim),BasicBlock(hidden_dim, hidden_dim),——连续出现三次

dropout

Dropout层在神经网络层当中是用来干什么的呢?它是一种可以用于减少神经网络过拟合的结构。

如上图我们定义的网络,一共有四个输入x_i,一个输出y。Dropout则是在每一个batch的训练当中随机减掉一些神经元,而作为编程者,我们可以设定每一层dropout(将神经元去除的的多少)的概率,在设定之后,就可以得到第一个batch进行训练的结果:  

从上图我们可以看到一些神经元之间断开了连接,因此它们被dropout了!dropout顾名思义就是被拿掉的意思,正因为我们在神经网络当中拿掉了一些神经元,所以才叫做dropout层。
在进行第一个batch的训练时,有以下步骤:

  • 设定每一个神经网络层进行dropout的概率
  • 根据相应的概率拿掉一部分的神经元,然后开始训练,更新没有被拿掉神经元以及权重的参数,将其保留
  • 参数全部更新之后,又重新根据相应的概率拿掉一部分神经元,然后开始训练,如果新用于训练的神经元已经在第一次当中训练过,那么我们继续更新它的参数。而第二次被剪掉的神经元,同时第一次已经更新过参数的,我们保留它的权重,不做修改,直到第n次batch进行dropout时没有将其删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/359254.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【科技素养题】少儿编程 蓝桥杯青少组科技素养题真题及解析第23套

少儿编程 蓝桥杯青少组科技素养题真题及解析第23套 1、英国计算机科学家艾伦图灵于 1950 年提出了著名的“图灵测试”,用于判断计算机是否具有智能。“图灵测试”是通过()的方法进行判断的 A、让两台计算机对话 B、让人类与计算机对话 C、给计算机出题 D、让计算机分辨图…

HarmonyOS使用Web组件加载页面

1、加载网络页面 在Web组件创建时,指定默认加载的网络页面 。在默认页面加载完成后,如果开发者需要变更此Web组件显示的网络页面,可以通过调用loadUrl()接口加载指定的网页。 默认在Web组件加载完“www.baidu.com”页面后,点击按…

云原生 k8s 可能使用到的端口整理【不定期更新】

k8s 因为涉及到的组件太多了,所以端口有很多,这里整理了日常所接触的接口,后续有新的再更新。 如果是通过公网 IP 进行安装的时候需要根据实际情况有选择的进行放开;一般只有云厂商会提供公网 IP 访问,自建的话不建议 …

APUE学习之进程间通信(IPC)(下篇)

目录 一、进程间通信(IPC) 二、信号量(Semaphore) 1、基本概念 2、同步关系与互斥关系 3、临界区与临界资源 4、信号量的工作原理 5、信号量编程 6、实战演练 三、共享内存(Shared Memory) 1、…

多线程c++

目录 1.join和detach区别 2.lock_guard和unique_lock 3.原子操作 4.条件变量condition_variable 5.future 和 promise 1.join和detach区别 ①不使用join和detach #include <iostream> #include <thread> #include <windows.h>using namespace std;v…

Linux文本三剑客-grep

1.grep简介&#xff1a; grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具&#xff0c;它能使用正则表达式搜索文本&#xff0c;并把匹配的行打印出来&#xff0c;都是按行处理的。 grep 最主要…

腾讯云云监控实践:使用云审计 CloudAudit SDK 精准管理腾讯云资源

文章目录 一、什么是腾讯云的操作审计 CloudAudit二、CloudAudit 有哪些优势三、CloudAudit 应用场景举例3.1 安全分析3.2 资源变更跟踪3.3 合规性审计 四、使用云审计 SDK 进行云监控4.1 安装环境包 PHP4.2 下载并解压云审计 PHP SDK4.3 创建的腾讯云持久证书&#xff08;如果…

解决:ModuleNotFoundError: No module named ‘selenium’

解决&#xff1a;ModuleNotFoundError: No module named ‘selenium’ 文章目录 解决&#xff1a;ModuleNotFoundError: No module named selenium背景报错问题报错翻译报错位置代码报错原因解决方法方法一&#xff0c;直接安装方法二&#xff0c;手动下载安装方法三&#xff0…

【Tomcat与网络2】一文理解Servlet是怎么工作的

在前面&#xff0c;我们研究了如何用idea来启动一个Servlet程序&#xff0c;今天我们就再来看一下Servlet是如何工作的。 目录 1.Servlet 介绍 2.Servlet 容器工作过程 3.Servlet的扩展 不管是电脑还是手机浏览器&#xff0c;发给服务端的就是一个 HTTP 格式的请求&#xf…

摄像头提示sd卡未格式化怎么回事?怎么解决

作为摄像头用户&#xff0c;往往会遇到或多或少的技术问题。而当摄像头显示"SD卡未格式化"的提示时&#xff0c;这可能令一些用户感到困惑和担忧。在本文中&#xff0c;我们将解释这个提示的原因&#xff0c;并提供一些建议来解决这一问题。我们相信本文会让您更加了…

select的change方法如何传递多个参数

element-ui中select的change方法传递多个参数 element-ui中的select&#xff0c;checkbox等组件的change方法的回调函数只有当前选择的val&#xff0c;如果想再传入自定义参数怎么办&#xff1f; 不能够传入自定义的参数&#xff0c;在进行某些操作时&#xff0c;会比较困难&…

[设计模式Java实现附plantuml源码~结构型]对象的间接访问——代理模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…

Ubuntu18.04安装Matlab流程笔记

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 Ubuntu18.04 安装Matlab流程 下载安装包和破解文件安装Matlab注册并运行 下载安装包和破解文件 matlabR2019A源码 提取码:2ztb 下载的Linux matlab2018a文件夹内有三个文件&#xff1a; # 解压Matlab201…

深度学习之循环神经网络 (基础)

循环神经网络简称为RNN&#xff0c;&#xff08;之前讲到的卷积神经网络简称为CNN&#xff09;。 以前我们在使用全链接网络的时候&#xff0c;我们将这种网络叫做Dense 或者是Deep。 Dense链接指的是全链接的。 我们输入的数据是数据样本的不同特征&#xff1a;x1&#xff…

VScode设置行宽提示线

vscode 设置行宽提示线&#xff0c;可以按如下步骤设置&#xff1a; 打开设置 搜索框输入 rulers&#xff0c;选择用户&#xff0c;点击 在 settings.json 中编辑 跳转到一个 json 文件后&#xff0c;将字段 rulers 对应值设置为 80 补充&#xff1a;如果您在您的 json 配…

JUC并发编程-四大函数式接口、Stream 流式计算、ForkJoin并行执行任务

12. 四大函数式接口 新时代的程序员&#xff1a;lambda表达式、链式编程、函数式接口、Stream流式计算 函数式接口&#xff1a;只有一个方法的接口&#xff0c;可以有一些默认的方法 如&#xff1a;Runnable接口函数 1&#xff09;Function 函数型接口 public class Functio…

java 图书管理系统 spring boot项目

java 图书管理系统ssm框架 spring boot项目 功能有管理员模块&#xff1a;图书管理&#xff0c;读者管理&#xff0c;借阅管理&#xff0c;登录&#xff0c;修改密码 读者端&#xff1a;可查看图书信息&#xff0c;借阅记录&#xff0c;登录&#xff0c;修改密码 技术&#…

常用芯片学习——CD4094芯片

CD4094 8位移位寄存器/3态输出缓冲器 使用说明 CD4094是由一个 8 位串行移位寄存器和一个 3 态输出缓冲器组成的 CMOS 集成电路。寄存器带有存储锁存功能&#xff0c;集成电路根据 STROBE 信号确定锁存器是否接收移位寄存器各位数据&#xff0c;数据是否由锁存器传输到 3 态输…

在Windows上安装与配置Apache服务并结合内网穿透工具实现公网远程访问本地内网服务

文章目录 前言1.Apache服务安装配置1.1 进入官网下载安装包1.2 Apache服务配置 2.安装cpolar内网穿透2.1 注册cpolar账号2.2 下载cpolar客户端 3. 获取远程桌面公网地址3.1 登录cpolar web ui管理界面3.2 创建公网地址 4. 固定公网地址 前言 Apache作为全球使用较高的Web服务器…

如何通过Hive/tez与Hadoop的整合快速实现大数据开发

一、Hive的功能 Hive是基于Hadoop的一个外围数据仓库分析组件&#xff0c;可以把Hive理解为一个数据仓库&#xff0c;但这和传统的数据库是有差别的。 传统数据库是面向业务存储&#xff0c;比如 OA、ERP 等系统使用的数据库&#xff0c;而数据仓库是为分析数据而设计的。同时…