FFmpeg5.0源码阅读—— avcodec_send_packetavcodec_receive_frame

  摘要:本文主要描述了FFmpeg中用于解码的接口的具体调用流程,详细描述了该接口被调用时所作的具体工作。
  关键字ffmpegavcodec_send_packetavcodec_receive_frame
  读者须知:读者需要了解FFmpeg的基本使用流程,以及一些FFmpeg的基本常识,了解FFmpegIO相关的内容,以及大致的解码流程。

  avcodec_send_packet接口将AVPacket数据发送给解码器进行解码,然后通过avcodec_receive_frame获取数据。

1 avcodec_send_packet

在这里插入图片描述

  avcodec_send_packet首先是检查解码器的合法性以及数据是否为空,如果输入数据和Context符合要求就会删除AVcodecContext->internal->buffer_pkt中缓存的一帧码流数据,将输入的Packet拷贝到该buffer上。av_bsf_send_packet只是拷贝增加输入的Packet引用计数到AVBSFInternal->buffer_pkt,最后如果缓存的buffer_frame是空的就会调用decode_receive_frame_internal解码帧,该过程根据配置项可谓同步也可为异步。

1.1 decode_receive_frame_internal

  decode_receive_frame_internal内就是真正的调用解码流程,如果解码器的receive_frame函数指针不为空就直接调用解码器的receive_frame进行解码该过程是同步的。否则就会调用decode_simple_receive_frame进行解码。解码完成后需要根据解码的数据和当前解码器Context的一些pts相关的值计算当前帧的具体pts和dts,另外如果有指定FrameDecodeData还会调用后处理流程fdd->post_process进行解码。

1.2 decode_simple_receive_frame

  decode_simple_receive_frame主要是调用decode_simple_internal进行解码。这里使用的Packet就是前面存储在AVBSFInternal中的buffer_pkt。然后就是实际调用解码的流程,如果没有配置解码线程就直接调用每个解码器对应的函数指针的avctx->codec->decode直接同步拿到帧。否则就会调用ff_thread_decode_frame进行多线程解码。
  FFmpeg中每种格式,解码器等都有自己的描述结构,比如下面是gif的解码器描述。

static const AVClass decoder_class = {
    .class_name = "gif decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
    .category   = AV_CLASS_CATEGORY_DECODER,
};

const AVCodec ff_gif_decoder = {
    .name           = "gif",
    .long_name      = NULL_IF_CONFIG_SMALL("GIF (Graphics Interchange Format)"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_GIF,
    .priv_data_size = sizeof(GifState),
    .init           = gif_decode_init,
    .close          = gif_decode_close,
    .decode         = gif_decode_frame,
    .capabilities   = AV_CODEC_CAP_DR1,
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE |
                      FF_CODEC_CAP_INIT_CLEANUP,
    .priv_class     = &decoder_class,
};

  ff_thread_decode_frame内都是通过锁和条件变量进行同步的。首先根据当前的状态获取一个解码线程的Context,然后将当前的Packet提交到该线程上,提交就是将一帧数据增加引用让解码Context的avpkt也占用输入帧的引用计数,提交完成就会发送信号通知在等待的解码线程启动。
  解码线程起始在avcodec_open2的时候就已经创建好了,在wait数据。具体的执行函数就是frame_worker_thread,该函数内就是调用codec->decode进行解码解码完成后就会发送通知到ff_thread_decode_frame中取解码完的帧。令条件if (!p->avctx->thread_safe_callbacks && ( p->avctx->get_format != avcodec_default_get_format || p->avctx->get_buffer2 != avcodec_default_get_buffer2))为A,如果A为true则当前线程是会被阻塞的,完全就是同步运行,否则就是多线程的。

if (!p->avctx->thread_safe_callbacks && (
         p->avctx->get_format != avcodec_default_get_format ||
         p->avctx->get_buffer2 != avcodec_default_get_buffer2)) {
        while (atomic_load(&p->state) != STATE_SETUP_FINISHED && atomic_load(&p->state) != STATE_INPUT_READY) {
            int call_done = 1;
            pthread_mutex_lock(&p->progress_mutex);
            while (atomic_load(&p->state) == STATE_SETTING_UP)
                pthread_cond_wait(&p->progress_cond, &p->progress_mutex);

            switch (atomic_load_explicit(&p->state, memory_order_acquire)) {
            case STATE_GET_BUFFER:
                p->result = ff_get_buffer(p->avctx, p->requested_frame, p->requested_flags);
                break;
            case STATE_GET_FORMAT:
                p->result_format = ff_get_format(p->avctx, p->available_formats);
                break;
            default:
                call_done = 0;
                break;
            }
            if (call_done) {
                atomic_store(&p->state, STATE_SETTING_UP);
                pthread_cond_signal(&p->progress_cond);
            }
            pthread_mutex_unlock(&p->progress_mutex);
        }
    }

2 avcodec_receive_frame

  avcodec_receive_frame比较简单先检查buffer_frame有没有数据,有的话就直接返回,没有即调用decode_receive_frame_internal进行解码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/35919.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 主从复制[异步 同步 半同步复制] 读写分离 优化 (非常重要)

MySQL 主从复制 1、什么是读写分离? 读写分离,基本的原理是让主数据库处理事务性增、改、删操作(INSERT、UPDATE、DELETE),而从数据库处理SELECT查询操作。数据库复制被用来把事务性操作导致的变更同步到集群中的从数据…

计算机网络概述(三)

常见的计算机网络体系结构 OSI体系结构: 物理层→数据链路层→网络层→运输层→会话层→表示层→应用层 TCP/IP体系结构: 网络接口层→网际层→运输层→应用层 一般用户的设备都有TCP/IP协议用于连接因特网,TCP/IP的网络接口层并没有规定使用…

【Redis】秒杀业务设计、悲观锁与乐观锁

1 全局ID生成器 一些情境下,使用数据库的ID自增将会产生一些问题。 一方面,自增ID规律性明显,可能被猜测出来并产生一些漏洞另一方面,当数据量很大很大很大时,单表数据量可能会受到限制,需要分表&#xf…

网络编程5——TCP协议的五大效率机制:滑动窗口+流量控制+拥塞控制+延时应答+捎带应答

文章目录 前言一、TCP协议段与机制TCP协议的特点TCP报头结构TCP协议的机制与特性 二、TCP协议的 滑动窗口机制 三、TCP协议的 流量控制机制 四、TCP协议的 拥塞控制机制 五、TCP协议的 延时应答机制 六、TCP协议的 捎带应答机制 总结 前言 本人是一个普通程序猿!分享一点自己的…

RabbitMQ在SpringBoot中的高级应用(2)

过期时间 1.单独的设置队列的存活时间,队列中的所有消息的过期时间一样 Bean//创建交换机public DirectExchange ttlQueueExchange(){// 交换机名称 是否持久化 是否自动删除return new DirectExchange("ttl_queue_log",true,false);}Bean//创建队列publ…

吴恩达ChatGPT《LangChain for LLM Application Development》笔记

基于 LangChain 的 LLM 应用开发 1. 介绍 现在,使用 Prompt 可以快速开发一个应用程序,但是一个应用程序可能需要多次写Prompt,并对 LLM 的输出结果进行解析。因此,需要编写很多胶水代码。 Harrison Chase 创建的 LangChain 框…

需求分析引言:架构漫谈(五)架构师成长之路

我研发领域也从事了一些年,期间也做过一些架构设计工作,包括C#单体转型为Java微服务、Python单体转型为Java微服务等, 也尝试着从自己的经验角度,来汇总一些知识点,同时描述一下如何成长为一个合格的软件架构师&#x…

基于SpringBoot+Vue+微信小程序的电影平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 研究背景:…

Docker 中的 .NET 异常了怎么抓 Dump (转载)

一、背景 1. 讲故事 有很多朋友跟我说,在 Windows 上看过你文章知道了怎么抓 Crash, CPU爆高,内存暴涨 等各种Dump,为什么你没有写在 Docker 中如何抓的相关文章呢?瞧不上吗? 哈哈,在DUMP的分析旅程中&a…

提升工作效率:推荐几款实用的Mac项目管理工具!

在当今软件和技术高度发达的时代,项目管理依然是一项非常重要的任务。现在,有越来越多的人喜欢使用mac电脑进行项目管理,因为mac众所周知的稳定性和使用便捷性。但问题是,mac系统自带的项目管理工具并不是非常完美,因此…

Linux——进程信号详解

目录 一.进程信号的理解 1.1定义: 1.2举例: 1.3总结: 二.进程信号地使用: 2.1信号种类: 2.2而操作系统向进程发送信号地方式有四种: 2.2.1以键盘的方式向进程发送信号 接下来介绍一个系统调用函数sign…

Windows系统上安装Node.js图文步骤流程

Windows系统上安装Node.js图文步骤流程,本文以安装Node.js v4.4.3 LTS(长期支持版本)版本为例: 目录 Node.js下载 Windows 上安装 Node.js 1、Windows 安装包(.msi) 2、Windows 二进制文件 (.exe)安装 版本测试 Node.js下载 Node.js 安装包及源码…

nginx七层代理和四层转发的理解

先来理解一下osi七层模型 应用层 应用层是ISO七层模型的最高层,它直接与用户和应用程序交互,提供用户与网络的接口。它包括各种应用协议,如HTTP、FTP、SMTP等,用于实现特定应用的功能和通信表示层 表示层…

Java进程ProcessBuilder类的介绍及使用,ProcessBuilder调用外部程序执行shell命令Linux命令

目录 ProcessBuilder类的介绍及使用 【前言】 【正文】 --构造方法-- --常用方法-- --使用技巧-- --调用本地Shell命令,实例-- 【总结】 【注意】 ProcessBuilder类的介绍及使用 【前言】 在做一个项目的时候需要用到运行时动态执行JAVA命令,一…

leetcode 225.用队列实现栈

⭐️ 题目描述 🌟 leetcode链接:用队列实现栈 1️⃣ 思路和图解: push: 入栈操作只需要往不为空的队列入数据即可,如果都为空,其中任意一个队列都可以。 void myStackPush(MyStack* obj, int x) {// 往…

CS EXE上线主机+文件下载上传键盘记录

前言 书接上文,CobaltStrike_1_部署教程及CS制作office宏文档钓鱼教程,该篇介绍【使用CS生成对应exe木马,上线主机;对上线主机进行,文件下载,文件上传,键盘记录】。 PS:文章仅供学习…

数仓建设中最常用模型--Kimball维度建模详解

数仓建模首推书籍《数据仓库工具箱:维度建模权威指南》,本篇文章参考此书而作。文章首发公众号:五分钟学大数据,公众号后台发送“维度建模”即可获取此书籍第三版电子书 先来介绍下此书,此书是基于作者 60 多年的实际业…

SpringBoot前后端分离项目,打包、部署到服务器详细图文流程

文章目录 实施步骤一、修改配置文件地址1.修改MySQL配置2.修改Redis配置3.修改日志路径和字符集配置 二、将源码压缩并上传服务器1.上传前端文件2.上传后端文件(同上) 三、前端项目打包1.安装依赖2.项目打包 四、后端项目打包1.项目打包(jar包…

Ubuntu 20.04 LTS 安装 nvidia 驱动 + cuda 11.8 从开始到放弃!

升级 sources.list # 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restricted universe multiverse deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu/ jammy main restri…

java的断言

断言介绍 Java的断言就是一条assert 声明,其中包含了一个布尔表达式。 断言可以被启用或者禁用,默认是禁用的。 断言被启用的情况下,执行到断言的声明,就会计算布尔表达式的值。如果表达式的值为false,那么就会抛出一…