如何使用YOLOv8训练自己的模型

本文介绍如何用YOLO8训练自己的模型,我们开门见山,直接步入正题。

前言:用yolo8在自己的数据集上训练模型首先需要配置好YOLO8的环境,如果不会配置YOLO8环境可以参考本人主页的另一篇文章

提醒:使用GPU训练会大幅度加快训练,有英伟达GPU的一定要配置GPU训练环境,没有英伟达显卡的只能采用CPU训练,但是一般不建议。 (GPU、CPU训练环境的配置具体见上面的文章链接)

第一章节:准备好数据集

配置好YOLO8环境之后,需要准备好YOLO格式的数据集(也称txt格式),该数据集可以通过数据集标注软件 labelme、labelimg对图片进行拉框标注得到。经过标注软件标注好的yolo数据集的格式通常为:

class_id        x                y            w           h

class_id: 类别的id编号
x: 目标的中心点x坐标(横向) /图片总宽度
y: 目标的中心的y坐标(纵向) /图片总高度
w:目标框的宽度/图片总宽度
h: 目标框的高度/图片总高度

下图为一张图片按照yolo格式进行标注的txt标注文件 

在进行训练之前,还需要对数据集进行划分,一般是按照7:2:1的比例划分训练集(train)、验证集(val)、测试集(test) 或者按照8:2的比例划分训练集与验证集。

提醒:用YOLO8训练自己的模型必须至少要把数据集划分出训练集与验证集,可以不划分测试集,训练集与验证集不可或缺,否则不能数据集进行模型训练。我这里只划分训练集与验证集,并且训练集与验证集应该是下面的目录结构

train
├── images
└── labels

val
├── images
└── labels

下面以葡萄叶片病虫害数据集为例,给出训练集、验证集目录结构的参考示例

 

 

在训练之前,我们不仅要把数据集划分成训练集、验证集,还需要给出类别标签yaml文件,该文件是YOLO8在训练过程中所必须的。也就是说,一个完整的,可以直接用于模型训练的数据集应该具有以下目录结构:

data.yaml的内容如下图所示: 

其中train、val指定训练集与验证集的路径地址(最好写成绝对路径) 

nc代表该数据集有几个类别,我这里的葡萄叶片病虫害数据集有四个类别

names代表具体的类别名称。可以以数组的形式给出,但请注意类别名称需要以英文或数字呈现,不能含有任何特殊字符或者中文字符。

提醒:yaml文件是必须的,如果你拿到的数据集不含这个文件,那么你要按照上面的格式自己手动写了,书写时需要严格按照yaml文件的格式(冒号后面是有一个空格的)

第二章节:开始训练

搞深度学习,绝大部分都是在linux系统上进行炼丹的。考虑到有的读者可能对Linux不熟悉,本章节首先给出win系统训练教程,然后再给出linux系统训练步骤。

注意:在训练的过程中,有英伟达显卡的一定要用GPU训练,用CPU训练是特别缓慢的。

2.1 训练参数

训练方式有多种,可以通过py程序训练,也可以在命令行训练,我们这里以py程序训练为例:

无论是在win系统还是linux系统,训练的代码基本都是一致的,只有极个别参数会因为系统的不同出现差异。

from ultralytics import YOLO

# 这里有三种训练方式,三种任选其一

#第一种:根据yaml文件构建一个新模型进行训练,若对YOLO8网络进行了修改(比如添加了注意力机制)适合选用此种训练方式。但请注意这种训练方式是重头训练(一切参数都要自己训练),训练时间、资源消耗都是十分巨大的
model = YOLO('yolov8n.yaml')  # build a new model from YAML

#第二种:加载一个预训练模型,在此基础之前上对参数进行调整。这种方式是深度学习界最最主流的方式。由于大部分参数已经训练好,我们仅需根据数据集对模型的部分参数进行微调,因此训练时间最短,计算资源消耗最小。
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

#第三种:根据yaml文件构建一个新模型,然后将预训练模型的参数转移到新模型中,然后进行训练,对YOLO8网络进行改进的适合选用此种训练方式,而且训练时间不至于过长
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
#data参数指定数据集yaml文件(我这里data.yaml与train、val文件夹同目录)
#epochs指定训练多少轮
#imgsz指定图片大小
results = model.train(data='data.yaml', epochs=100, imgsz=640)

model.train()函数可以指定的训练参数有很多,如下表所示: 

Key

Value

Description

model

None

path to model file, i.e. yolov8n.pt, yolov8n.yaml

data

None

path to data file, i.e. coco128.yaml

epochs

100

number of epochs to train for

time

None

number of hours to train for, overrides epochs if supplied

patience

50

epochs to wait for no observable improvement for early stopping of training

batch

16

number of images per batch (-1 for AutoBatch)

imgsz

640

size of input images as integer

save

True

save train checkpoints and predict results

save_period

-1

Save checkpoint every x epochs (disabled if < 1)

cache

False

True/ram, disk or False. Use cache for data loading

device

None

device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu

workers

8

number of worker threads for data loading (per RANK if DDP)

project

None

project name

name

None

experiment name

exist_ok

False

whether to overwrite existing experiment

pretrained

True

(bool or str) whether to use a pretrained model (bool) or a model to load weights from (str)

optimizer

'auto'

optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto]

verbose

False

whether to print verbose output

seed

0

random seed for reproducibility

deterministic

True

whether to enable deterministic mode

single_cls

False

train multi-class data as single-class

rect

False

rectangular training with each batch collated for minimum padding

cos_lr

False

use cosine learning rate scheduler

close_mosaic

10

(int) disable mosaic augmentation for final epochs (0 to disable)

resume

False

resume training from last checkpoint

amp

True

Automatic Mixed Precision (AMP) training, choices=[True, False]

fraction

1.0

dataset fraction to train on (default is 1.0, all images in train set)

profile

False

profile ONNX and TensorRT speeds during training for loggers

freeze

None

(int or list, optional) freeze first n layers, or freeze list of layer indices during training

lr0

0.01

initial learning rate (i.e. SGD=1E-2, Adam=1E-3)

lrf

0.01

final learning rate (lr0 * lrf)

momentum

0.937

SGD momentum/Adam beta1

weight_decay

0.0005

optimizer weight decay 5e-4

warmup_epochs

3.0

warmup epochs (fractions ok)

warmup_momentum

0.8

warmup initial momentum

warmup_bias_lr

0.1

warmup initial bias lr

box

7.5

box loss gain

cls

0.5

cls loss gain (scale with pixels)

dfl

1.5

dfl loss gain

pose

12.0

pose loss gain (pose-only)

kobj

2.0

keypoint obj loss gain (pose-only)

label_smoothing

0.0

label smoothing (fraction)

nbs

64

nominal batch size

overlap_mask

True

masks should overlap during training (segment train only)

mask_ratio

4

mask downsample ratio (segment train only)

dropout

0.0

use dropout regularization (classify train only)

val

True

validate/test during training

plots

False

save plots and images during train/val

下面指出几个比较重要的训练参数

1. epochs 
epochs: 训练的轮数。这个参数确定了模型将会被训练多少次,每一轮都遍历整个训练数据集。训练的轮数越多,模型对数据的学习就越充分,但也增加了训练时间。

选取策略
默认是100轮数。但一般对于新数据集,我们还不知道这个数据集学习的难易程度,可以加大轮数,例如300,来找到更佳性能。

2. patience
patience: 早停的等待轮数。在训练过程中,如果在一定的轮数内没有观察到模型性能的明显提升,就会停止训练。这个参数确定了等待的轮数,如果超过该轮数仍没有改进,则停止训练。

早停
早停能减少过拟合。过拟合(overfitting)指的是只能拟合训练数据, 但不能很好地拟合不包含在训练数据中的其他数据的状态。

3. batch
batch: 每个批次中的图像数量。在训练过程中,数据被分成多个批次进行处理,每个批次包含一定数量的图像。这个参数确定了每个批次中包含的图像数量。特殊的是,如果设置为**-1**,则会自动调整批次大小,至你的显卡能容纳的最多图像数量。

选取策略
一般认为batch越大越好。因为我们的batch越大我们选择的这个batch中的图片更有可能代表整个数据集的分布,从而帮助模型学习。但batch越大占用的显卡显存空间越多,所以还是有上限的。

4. imgsz
imgsz: 输入图像的尺寸。这个参数确定了输入图像的大小。可以指定一个整数值表示图像的边长,也可以指定宽度和高度的组合。例如640表示图像的宽度和高度均为640像素。
选取策略
如果数据集中存在大量小对象,增大输入图像的尺寸imgsz可以使得这些小对象从高分辨率中受益,更好的被检测出。

5. device 
device: 训练运行的设备。该参数指定了模型训练所使用的设备,例如使用 GPU 运行可以指定为 cuda device=0,或者使用多个 GPU 运行可以指定为 device=0,1,2,3,如果没有可用的 GPU,可以指定为 device=cpu 使用 CPU 进行训练。

6. workers
workers: 数据加载时的工作线程数。在数据加载过程中,可以使用多个线程并行地加载数据,以提高数据读取速度。这个参数确定了加载数据时使用的线程数,具体的最佳值取决于硬件和数据集的大小。
windows系统注意设置为0!!!windows系统下需设置为0,否则会报错!!!
RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase。

这是因为在linux系统中可以使用多个子进程加载数据,而在windows系统中不能。

 7. optimizer

optimizer: 选择要使用的优化器。优化器是深度学习中用于调整模型参数以最小化损失函数的算法。可以选择不同的优化器,如 ‘SGD’、‘Adam’、‘AdamW’、‘RMSProp’,根据任务需求选择适合的优化器。

2.2 在win系统中进行训练

在开始训练之前,文件参考目录如下:

我这里直接加载yolovn8预训练模型进行训练,训练代码train.py内容如下:

from ultralytics import YOLO
model=YOLO('yolov8n.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=0,batch=32,epochs=60)

需要注意的是,目录下最好提前下载好预训练模型(我这里是yolov8n.pt),如果没有提前下载好,运行train.py还是会ultralytics官网下载,由于外网的缘故,此时可能会出现网络问题。

紧接着,我们在anaconda中切换到提前已经配置好的yolo8环境,然后python命令运行train.py

之后,控制台窗口会有一系列的日志输出

 此时,训练成功。经过一段时间等待之后,在目录下的runs文件夹下会自动生成训练过程记录,包含模型权重、混淆矩阵、PR曲线、loss曲线等

2.3 在linux系统中进行训练

在linux系统中我们可以加大workers(数据加载时的工作线程数),从而加快训练速度,代码跟win系统基本保持一致:

from ultralytics import YOLO
model=YOLO('yolov8n.pt')
model.train(data='./data.yaml',imgsz=(640,640),workers=16,batch=32,epochs=60)

值得注意的是,无论是在win系统中还是linux系统中,都要根据自己电脑、服务器的算力去选择合适的workers和batch,设置过小训练速度慢,设置过大,会out of memory.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/357034.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实习日志7

1.试试pdf发票识别 1.1.添加文件类型判断 //判断文件类型 if (getFileType(imgCodeCell.getValue()) "jpg"||getFileType(imgCodeCell.getValue()) "png"||getFileType(imgCodeCell.getValue()) "jpeg"||getFileType(imgCodeCell.getValue(…

Python爬虫解析库安装

解析库的安装 抓取网页代码之后&#xff0c;下一步就是从网页中提取信息。提取信息的方式有多种多样&#xff0c;可以使用正则来提取&#xff0c;但是写起来相对比较烦琐。这里还有许多强大的解析库&#xff0c;如 lxml、Beautiful Soup、pyquery 等。此外&#xff0c;还提供了…

R语言(数据导入,清洗,可视化,特征工程,建模)

记录一下痛失的超级轻松的数据分析实习&#xff08;线上&#xff09;&#xff0c;hr问我有没有相关经历&#xff0c;我说我会用jupyter book进行数据导入&#xff0c;清洗&#xff0c;可视化&#xff0c;特征工程&#xff0c;建模&#xff0c;python学和用的比较多&#xff0c;…

Vue学习之使用开发工具创建项目、gitcode管理项目

Vue学习之使用开发工具创建项目、gitcode管理项目 翻阅与学习了vue的开发工具&#xff0c;通过对比最终采用HBuilderX作为开发工具&#xff0c;以下章节对HBuilder安装与基础使用介绍 1. HBuilder 下载 从HbuildX官网&#xff08;http://www.dcloud.io/hbuilderx.html&#…

HarmonyOS模拟器启动失败,电脑蓝屏解决办法

1、在Tool->Device Manager管理界面中&#xff0c;通过Wipe User Data清理模拟器用户数据&#xff0c;然后重启模拟器&#xff1b;如果该方法无效&#xff0c;需要Delete删除已创建的Local Emulater。 2、在Tool->SDK Manager管理界面的PlatForm选项卡中&#xff0c;取消…

Redis面试(三)

1.Redis报内存不足怎么处理 Redis内存不足的集中处理方式&#xff1a; 修改配置文件redis.cof的maxmemory参数&#xff0c;增加Redis的可用内存通过命令修改set maxmemory动态设置内存上限修改内存淘汰策略&#xff0c;及时释放内存使用Redis集群&#xff0c;及时进行扩容 2…

【MySQL】双写、重做日志对宕机时脏页数据落盘的作用的疑问及浅析

众所周知&#xff0c;双写机制、重做日志文件是mysql的InnoDB引擎的几个重要特性之二。其中两者的作用都是什么&#xff0c;很多文章都有分析&#xff0c;如&#xff0c;双写机制&#xff08;Double Write&#xff09;是mysql在crash后恢复的机制&#xff0c;而重做日志文件&am…

Java 集合 05 综合练习-返回多个数据

代码&#xff1a; import java.util.ArrayList; import java.util.Arrays;public class practice{public static void main(String[] args) {ArrayList<Phone> list new ArrayList<>();Phone p1 new Phone("小米",1000);Phone p2 new Phone("苹…

51单片机通过级联74HC595实现倒计时秒表Protues仿真设计

一、设计背景 近年来随着科技的飞速发展&#xff0c;单片机的应用正在不断的走向深入。本文阐述了51单片机通过级联74HC595实现倒计时秒表设计&#xff0c;倒计时精度达0.05s&#xff0c;解决了传统的由于倒计时精度不够造成的误差和不公平性&#xff0c;是各种体育竞赛的必备设…

数据结构.栈

一、栈的定义 二、初始化 #include<iostream> using namespace std; const int N 10; typedef struct {int data[N];int top; }SqStack; void InitSqStack(SqStack &S)//初始化 {S.top -1; } 三、进栈 void Push(SqStack& S, int x)//入栈 {S.data[S.top] x; …

深入了解Matplotlib中的子图创建方法

深入了解Matplotlib中的子图创建方法 一 add_axes( **kwargs):1.1 函数介绍1.2 示例一 创建第一张子图1.2 示例二 polar参数的运用1.3 示例三 创建多张子图 二 add_subplot(*args, **kwargs):2.1 函数介绍2.2 示例一 三 两种方法的区别3.1 参数形式3.2 布局灵活性3.3 适用场景3…

机器学习:多项式回归(Python)

多元线性回归闭式解&#xff1a; closed_form_sol.py import numpy as np import matplotlib.pyplot as pltclass LRClosedFormSol:def __init__(self, fit_interceptTrue, normalizeTrue):""":param fit_intercept: 是否训练bias:param normalize: 是否标准化…

verdaccio搭建npm私服

一、安装verdaccio 注&#xff1a;加上–unsafe-perm的原因是防止报grywarn权限的错 npm install -g verdaccio --unsafe-perm 二、启动verdaccio verdaccio 三、配置文件 找到config.yml一般情况下都在用户下的这个文件夹下面 注&#xff1a;首次启动后才会生成 C:\Users\h…

/etc/profile错误,命令失效

source /etc/profile后所有命令失效 执行 export PATH/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin:/root/bin 修改后 执行:wq! 执行:w !sudo tee %

怎么控制Element的数据树形表格展开所有行;递归操作,打造万能数据表格折叠。

HTML <el-button type"success" size"small" click"expandStatusFun"> <span v-show"expandStatusfalse"><i class"el-icon-folder-opened"></i>展开全部</span><span v-show"expan…

鸿蒙原生应用开发已全面启动,你还在等什么?

2019年&#xff0c;鸿蒙系统首次公开亮相&#xff0c;你们说&#xff0c;等等看&#xff0c;还不成熟&#xff1b; 2021年&#xff0c;鸿蒙系统首次在手机端升级&#xff0c;你们说&#xff0c;等等看&#xff0c;还不完善&#xff1b; 2024年&#xff0c;鸿飞计划发布&#…

STM32以太网接口在TCP/IP通信中的应用案例

在STM32的以太网通信中&#xff0c;TCP/IP协议广泛应用于各种领域&#xff0c;如远程监控、物联网、工业控制等。下面以一个STM32基于TCP/IP协议的以太网通信的应用案例为例进行介绍。 ✅作者简介&#xff1a;热爱科研的嵌入式开发者&#xff0c;修心和技术同步精进 ❤欢迎关注…

C#颜色拾取器

1&#xff0c;目的&#xff1a; 获取屏幕上任意位置像素的色值。 2&#xff0c;知识点: 热键的注册与注销。 /// <summary>/// 热键注册/// </summary>/// <param name"hWnd">要定义热键的窗口的句柄 </param>/// <param name"id…

如何使用Python Flask搭建一个web页面并实现远程访问

文章目录 前言1. 安装部署Flask并制作SayHello问答界面2. 安装Cpolar内网穿透3. 配置Flask的问答界面公网访问地址4. 公网远程访问Flask的问答界面 前言 Flask是一个Python编写的Web微框架&#xff0c;让我们可以使用Python语言快速实现一个网站或Web服务&#xff0c;本期教程…

C++多线程1(复习向笔记)

创建线程以及相关函数 当用thread类创建线程对象绑定函数后&#xff0c;该线程在主线程执行时就已经自动开始执行了,join起到阻塞主线程的作用 #include <iostream> #include <thread> #include <string> using namespace std; //测试函数 void printStrin…