opencv#33 边缘检测

边缘检测原理

     图像的每一行每一列都可以看成是一个连续的信号经过离散后得到的数值,例如上图左侧给出的图像由黑色到白色的一个信号,也就是图像中某一行像素变化是由黑色逐渐到白色,我们将其对应在一个坐标轴中,将像素值的大小对应与我们y轴,我们可以得到中间图片的曲线,曲线就表示这图像某一行像素灰度值的变化关系,当我们对此曲线求导,就可以得到最下面图片的曲线,图像的边缘就是图像中像素灰度值发生变化的像素点的集合,通过计算函数导数的方式可以找到灰度值变化的点,导数值大说明灰度值变化大,导数值为0,说明灰度值没有变化。图像边缘就是对于灰度函数图像中函数值发生突然改变的区域(点的集合)。

      导数(梯度)是微分中的概念,而微分针对的是连续可导的函数,但我们图像是离散的函数,因此对应着差分。微分差分核心思想一致,我们在边缘检测的过程中运用微分的思想来指导,但在实际操作中,我们用差分的形式来实现边缘检测。

      我们计算梯度(导数)时,通常采用差分值来表示导数,差分值就是两个像素的差值,由于梯度对于图像信号来说是一个相对的概念,也就是如果每一个梯度都乘或除以2是没有任何区别的,因此这里我们直接相减就可以。两个像素间的梯度对应在图像中没有意义,因此我们改进的想法是,若有三个像素,第三个像素减去第一个像素除以两者之间的距离,得到的就是第二个像素的梯度,通过这样的方式实现了梯度与像素相对应的方式。

Sobel算子边缘检测

Sobel()

void cv::Sobel(InputArray    src,
               OutputArray   dst,
               int           ddepth,
               int           dx,
               int           dy,
               int           ksize = 3,
               double        scale = 1,
               double        delta = 0,
               int           borderType = BORDER_DEFAULT
              )

·src:待边缘检测图像。

·dst:边缘检测后图像,与输入图像具有相同的尺寸和通道数。

·ddepth:边缘检测后,输出图像的数据类型,由于像素的变化不规律,因此我们用后一时刻的像素减去前一时刻的像素,两个像素的大小未知,可能会出现负值,所以不推荐使用八位无符号整数8U,我们可以使用16S。

·dx,dy:进行索贝尔算子时对于边缘检测的梯度的阶次。

·ksize:使用边缘检测时算子的尺寸大小,默认值为3.

·scale,delta:卷积过程中,对结果进行缩放的系数以及偏移量。例如图像变化平缓,那么得到的系数可能就比较小,直接乘这个系数就可以将梯度扩大,scale默认值为1,也就是不对结果进行缩放,delta默认值为0,也就是不对结果进行偏移。

·borderType:图像外扩标志。

     进行索贝尔边缘检测时,常见的方法是先进行行检测,再进行列检测,也就是对x和y方向分别求导。而在图像的每一点,结合上面求出的导数值,利用勾股定理求出近似梯度,或者是为了提高效率,使用不开平方的近似:利用x和y方向的导数的绝对值之和求出图像每一点的近似值的绝对值。这样可以实现对于图像整体的边缘检测。

     索贝尔算子为了增加梯度的大小,允许计算时三行同时进行计算,例如上图x方向的计算,是有一个主要的计算行(比如中间行),上下两行作为辅助计算,主要行所占权重较大,辅助行所占权重较小,y方向计算也是一样的,对y行进行转置,就可以得到y方向上边缘检测的边缘检测算子。

Scharr算子边缘检测

Scharr()

void cv::Scharr(InputArray    src,
                OutputArray   dst,
                int           ddepth,
                int           dx,
                int           dy,
                double        scale = 1,
                double        delta = 0,
                int           borderType = BORDER_DEFAULT
               )

Scharr算子就是在原先索贝尔算子的基础上对边缘检测的结果进一步加强。也就是得到的边缘响应更强了。

x方向的算子其实就是在索贝尔算子的基础上调整了每一个位置的系数,将主要行设置成10,将辅助行设置成3,这样可以得到一个较大的响应,但坏处是比较微弱的边缘通过此算子计算也会得到较强的响应。对于x方向算子进行转置,我们也可以得到y方向的算子。

两种算子的生成

getDerivKernels()

上面两种算子的函数内部也是调用了此函数。

void cv::getDerivKernels(OutputArray    kx,
                         OutputArray    ky,
                         int            dx,
                         int            dy,
                         int            ksize,
                                        normalize = 
                         bool           false,
                         int            ktype = cv_32F
                        )

·kx:行滤波器系数的输出矩阵,尺寸为ksize*1。

·ky:列滤波器系数的输出矩阵,尺寸为ksize*1。

·dx:X方向导数的阶次。

·dy:y方向导数的阶次。

·ksize:滤波器的大小,可以选择的参数为FILTER_SCHARR(得到的就是Scharr算子),1,3,5,或7(可设定为索贝尔算子)。

·normalize:是否对滤波器系数进行归一化的标志,默认值为false,表示不进行归一化。上面的Sobel算子和Scharr算子都没有进行归一化,可能会使得边缘梯度响应特别大。

·ktype:滤波器系数类型,可以选择CV_32F或CV_64F,默认参数是CV_32F。

这里需要说明一点:当我们选择Sobel算子时,梯度阶数dx,dy <= 尺寸;Scharr算子的dx+dy <= 1。

通过这样的形式规定了结束与算子种类以及尺寸的关系,当我们求取过高的阶数,而采用较小的尺寸,这样是没办法实现过高阶数的求取的。

示例
#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv; //opencv的命名空间
using namespace std;


//主函数
int main()
{
	//读取图像,黑白图像边缘检测结果较为明显
	Mat img = imread("E:/opencv/opencv-4.6.0-vc14_vc15/opencv/lenaGray.png");
	if (img.empty())
	{
		cout << "请确认图像文件名称是否正确" << endl;
		return -1;
	}
	Mat resultX, resultY, resultXY;

	//X方向一阶边缘
	Sobel(img, resultX, CV_16S, 1, 0, 1); //尺寸参数设置为1其实是3
	convertScaleAbs(resultX, resultX); //求绝对值函数

	//Y方向一阶边缘
	Sobel(img, resultY, CV_16S, 0, 1, 3); //只不过将上面的dx,dy交换了,尺寸参数设置为1还是3是一致的
	convertScaleAbs(resultY, resultY);

	//整体图像的一阶边缘
	resultXY = resultX + resultY;

	//显示图像
	imshow("resultX", resultX);
	imshow("resultY", resultY);
	imshow("resultXY", resultXY);

	cout << "下面是进行Scharr边缘检测" << endl;
	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出

	//X方向一阶边缘
	Scharr(img, resultX, CV_16S, 1, 0);
	convertScaleAbs(resultX, resultX); //求绝对值函数

	//Y方向一阶边缘
	Scharr(img, resultY, CV_16S,0,1);
	convertScaleAbs(resultY, resultY);

	//整体图像的一阶边缘
	resultXY = resultX + resultY;

	//显示图像
	imshow("resultX", resultX);
	imshow("resultY", resultY);
	imshow("resultXY", resultXY);

	cout << "接下来生成边缘检测器" << endl;
	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出

	Mat sobel_x1, sobel_y1;//存放分离的Sobel算子
	Mat scharr_x, scharr_y;//存放分离的Scharr算子
	Mat sobelX1, scharrX;//存放最终算子

	//一阶X方向Sobel算子
	getDerivKernels(sobel_x1, sobel_y1, 1, 0, 3);//一阶尺寸为3
	sobel_x1 = sobel_x1.reshape(CV_8U, 1);
	sobelX1 = sobel_y1 * sobel_x1; //计算滤波器

	//X方向Scharr算子
	getDerivKernels(scharr_x, scharr_y, 1, 0, FILTER_SCHARR);
	scharr_x = scharr_x.reshape(CV_8U, 1);
	scharrX = scharr_y * scharr_x; //计算整体x方向滤波器

	cout << "X方向一阶Sobel算子" << endl << sobelX1 << endl;
	cout << "X方向Scharr算子" << endl << scharrX << endl;

	waitKey(0);//等待函数用于显示图像,按下键盘任意键后退出
	return 0;

}
结果

Sobel边缘检测:

 

Scharr边缘检测:

 

 

生成的边缘检测器:

 

对于Sobel算子边缘检测的X方向,得到的边缘更多的是垂直的边缘,而Y方向,得到的边缘更多的是行方向的边缘,说明X方向和Y方向在进行检测时是各有侧重点的。将两者叠加就可以得到整幅图像的边缘。

对于Scharr算子边缘检测与Sobel是类似的,由于Scharr类型将得到的边缘梯度进行了很大的扩展,因此较小的边缘区域也被显示出来,所以得到的结果中感觉出有很多边缘,实际上它对微弱的边缘进行了扩充,可能两个像素只相差1,但是对结果扩大了很多倍,显示的就较亮,得到整体也是一个更加亮的图像。

生成的两种算子的类型,得到的结果是与上面一致。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/353901.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

sysfs: cannot create duplicate filename ‘/devices/virtual/leds/led1‘问题查找及解决

问题描述&#xff1a;安装模块时出现如下错误&#xff1a; [rootVinxin_PC leds]# cd /driver_Test/ [rootVinxin_PC driver_Test]# ls app leds-s5pv210.ko [rootVinxin_PC driver_Test]# lsmod Module Size Used by Not tainted [rootVin…

最全全国十七个数据入表和资产化案例深度解析

2024年1月1日起&#xff0c;财政部会计司发布的《企业数据资源相关会计处理暂行规定》正式施行&#xff0c;规定为数据资源的会计处理提供了明确的指导原则。这一里程碑事件也标志着我国在数据资产入表领域正式进入实际操作阶段&#xff0c;随后&#xff0c;数据资产入表在全国…

stable diffusion学习笔记——文生图(一)

模型设置 基本模型 基本模型也就是常说的checkpoint&#xff08;大模型&#xff09;&#xff0c;基本模型决定了生成图片的主体风格。 如上图所示&#xff0c;基本模型的后缀为.safetensors。需要存放在特定的文件夹下。 如果用的是启动器&#xff0c;可以在启动器内直接下载。…

2024年黑龙江省安全员C证证考试题库及黑龙江省安全员C证试题解析

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年黑龙江省安全员C证证考试题库及黑龙江省安全员C证试题解析是安全生产模拟考试一点通结合&#xff08;安监局&#xff09;特种作业人员操作证考试大纲和&#xff08;质检局&#xff09;特种设备作业人员上岗证考…

(java)idel中将对与json的相互转

1、目录结构 2、导入包 在模块下面建立lib目录将包导入模块中 包的百度网盘 链接&#xff1a;https://pan.baidu.com/s/1abNF8cOTeNb00rM7tp04iQ?pwd39wc 提取码&#xff1a;39wc 3、建立两个测试类person和dog类 public class Dog {private String name;private int age…

STM32标准库——(5)EXTI外部中断

1.中断系统 中断&#xff1a;在主程序运行过程中&#xff0c;出现了特定的中断触发条件&#xff08;中断源&#xff09;&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序&#xff0c;处理完成后又返回原来被暂停的位置继续运行 中断优先级&#xff…

CMake 完整入门教程(一)

1 前言 每一次学习新东西都是很有乐趣的&#xff0c;虽然刚开始会花费时间用来学习&#xff0c;但是实践证明&#xff0c;虽然学习新东西可能会花费一些时间&#xff0c;但是它们带来的好处会远远超过这些花费的时间。学习新东西是值得的&#xff0c;也是很有乐趣的。 网络上…

六、Kotlin 类型进阶

1. 类的构造器 & init 代码块 1.1 主构造器 & 副构造器在使用时的注意事项 & 注解 JvmOverloads 推荐在类定义时为类提供一个主构造器&#xff1b; 在为类提供了主构造器的情况下&#xff0c;当再定义其他的副构造器时&#xff0c;要求副构造器必须调用到主构造器…

安全防御{第三次作业(在第二次作业上添加点需求)}

目录 需求&#xff1a; 拓扑图&#xff1a; 注意&#xff1a;先打开防火墙web界面&#xff0c;在此不做演示 1.要求一&#xff1a;&#xff0c;生产区在工作时间内可以访问服务器区&#xff0c;仅可以访问http服务器 2.要求二&#xff1a;办公区全天可以访问服务器区&#…

RISC-V RVWMO 内存模型解释

RISC-V RVWMO 内存模型解释 引言 本文介绍 RISC-V RVWMO 内存模型。RVWMO 内存模型定义了什么样的全局内存顺序才是合法的。本引言部分将解释为什么会出现不合法的全局内存顺序&#xff0c;以及为什么需要内存模型。 首先引起乱序的全局内存顺序&#xff08;指令重排序&…

静态分析C语言生成函数调用关系的利器——cally和egypt

大纲 准备工作安装graphviz安装cally安装egypt简单分析GCC产生RTL&#xff08;Register transfer language&#xff09;文件callyegypt总结 高级分析callyegypt 总结参考资料 在《静态分析C语言生成函数调用关系的利器——cflow》和《静态分析C语言生成函数调用关系的利器——c…

What is `@Scheduled` does?

Scheduled 是Spring框架中用于定时任务调度的注解&#xff0c;它允许我们在类的方法上声明一个方法作为定时任务&#xff0c;由Spring容器统一管理和执行。使用此注解后&#xff0c;Spring会根据注解中的属性配置&#xff0c;按照指定的时间规则自动调用该方法。 public class…

网络编程小总结

【一】网络编程 互联网的本质就是一些网络协议 【1】网络开发架构 &#xff08; 1 &#xff09; C / S 架构 C : client &#xff08;客户端&#xff09; S: server (服务端) APP - 就是服务端 C/S 架构通过客户端软件和服务器之间的交互&#xff0c;实现了前端界面和后…

项目部署上线过程

写在前面 你应该去喜欢那些&#xff0c;让你觉得自己很美好&#xff0c;由衷感受到幸福的人&#xff0c;而不是那些让你卑微到尘埃里&#xff0c;让你觉得自己很没用的人。 …

【大数据】Flink 架构(一):系统架构

Flink 架构&#xff08;一&#xff09;&#xff1a;系统架构 1.Flink 组件1.1 JobManager1.2 ResourceManager1.3 TaskManager1.4 Dispatcher 2.应用部署2.1 框架模式2.2 库模式 3.任务执行4.高可用设置4.1 TaskManager 故障4.2 JobManager 故障 Flink 是一个用于状态化并行流处…

关于AOP的@Around特殊处理RequestBody的使用小结

目录 1. 概述 1.1 背景 1.2 源码 2. 测试 2.1 Controller 2.2 SpecialName配置 2.3 RequestConverter 2.4 测试 最近项目上遇到一个这样的需求&#xff1a;用户请求的时候传过来A&#xff0c;在api处理过程中要把A当成B去处理&#xff0c;但是返回的标识中又必须是A作为…

可以运行在浏览器的Windows 2000

Windows 2000 可以在浏览器里跑了&#xff0c;缺点就是速度慢。 JSLinux JSLinux 在浏览器中运行 Linux 或其他操作系统&#xff01; 可以使用以下仿真系统&#xff1a; 中央处理器操作系统用户 界面VF同步 访问启动 链接TEMU 配置评论x86阿尔派Linux 3.12.0安慰是的点击这…

数据处理方法—— 7 种数据降维操作 !!

文章目录 数据降维 1. 主成分分析&#xff08;PCA&#xff09; 2. 线性判别分析&#xff08;LDA&#xff09; 3. t-分布随机邻域嵌入&#xff08;t-SNE&#xff09; 4. 局部线性嵌入&#xff08;LLE) 5. 多维缩放&#xff08;MDS) 6. 奇异值分解&#xff08;SVD) 7. 自动编码器…

前端实现弹小球功能

这篇文章将会做弹小球游戏&#xff0c;弹小球游戏大家小时候都玩过&#xff0c;玩家需要在小球到达游戏区域底部时候控制砖块去承接小球&#xff0c;并不断的将小球弹出去。 首先看一下实现的效果。 效果演示 玩家需要通过控制鼠标来实现砖块的移动&#xff0c;保证在小球下落…

Linux操作系统运维-用户与用户组管理

Linux操作系统运维-用户与用户组管理 用户种类与标识查看 超级用户&#xff08;root&#xff09;&#xff1a;可以不受限制地执行所有操作&#xff0c;拥有系统最高权限&#xff0c;修改系统设置与管理用户均需要root权限系统用户&#xff08;system&#xff09;&#xff1a;…