部署 CNI网络组件

部署 flannel

K8S 中 Pod 网络通信:
●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,
相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,
同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,
Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,
且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。
因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,
通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。
Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,
该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,
然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,
目前支持 udp、vxlan、 host-GW 3种数据转发方式。
#Flannel udp 模式的工作原理:
数据从 node01 上 Pod 的源容器中发出后,
经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,
flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。
源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,
数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,
之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。
#ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 vxlan 模式差。
#vxlan 模式:
vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:
(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,
再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好
(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,
属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp
(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,
arp广播等二层知识,udp模式主要关注路由

#Flannel vxlan 模式的工作原理:
vxlan在内核当中实现,当数据包使用vxlan设备发送数据时,
会打上vlxan的头部信息,在发送出去,对端解包,flannel.1网卡把原始报文发送到目的服务器。

部署vxlan

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v1.3.0.tgz  和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir /opt/cni/bin -p
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz 

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system
NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-hjtc7   1/1     Running   0          7s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.80.11   Ready    <none>   81m   v1.20.11

 

部署 Calico

#k8s 组网方案对比:
●flannel方案
需要在每个节点上把发向容器的数据包进行封装后,
再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。
目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。
数据通信性能则大受影响。

●calico方案
Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,
使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

#Calico 主要由三个部分组成:
Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。
#Calico 工作原理:
Calico 是通过路由表来维护每个 pod 的通信。
Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 
然后把另一端接入到宿主机网络空间,
由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则,
用于接收传入的IP包。
有了这样的 veth pair 设备以后,容器发出的IP包就会通过 veth pair 设备到达宿主机,
然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,
彼此之间通过 BGP 交换路由,这些节点我们叫做 BGP Peer。

目前比较常用的时flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,
calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,
所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,
配置更多网络策略,则使用calico更好。

在 master01 节点上操作 

#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),与前面kube-controller-manager配置文件指定的cluster-cidr网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "192.168.0.0/16"
  
kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes

 node02 节点部署

//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.146.40:/opt/
scp -r /opt/cni root@192.168.146.40:/opt/

//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.146.40

//在 master01 节点上操作
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   10s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#通过 CSR 请求
kubectl certificate approve node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0

kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-BbqEh6LvhD4R6YdDUeEPthkb6T_CJDcpVsmdvnh81y0   23s  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   85m  kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.146.40

#查看群集中的节点状态
kubectl get nodes

 部署 CoreDNS

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                          READY   STATUS    RESTARTS   AGE
coredns-5ffbfd976d-j6shb      1/1     Running   0          32s

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

master02 节点部署 

//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.80.20:/opt/
scp -r /opt/kubernetes/ root@192.168.80.20:/opt
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.80.20:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.80.10:2379,https://192.168.80.11:2379,https://192.168.80.12:2379 \
--bind-address=192.168.80.20 \				#修改
--secure-port=6443 \
--advertise-address=192.168.80.20 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

负载均衡部署

//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
	access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.80.10:6443;
        server 192.168.80.20:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid,两个节点要一致
    priority 100			#lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.80.100/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.80.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.80.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.80.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      44904/nginx: master 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46954     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45074     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53308     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:53316     192.168.80.20:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48784     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.14:45070     192.168.80.10:6443      ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.11:48794     ESTABLISHED 44905/nginx: worker 
tcp        0      0 192.168.80.100:6443     192.168.80.12:46968     ESTABLISHED 44905/nginx: worker 


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME                    READY   STATUS              RESTARTS   AGE
nginx-dbddb74b8-nf9sk   0/1     ContainerCreating   0          33s   #正在创建中

kubectl get pods
NAME                    READY   STATUS    RESTARTS   AGE
nginx-dbddb74b8-nf9sk   1/1     Running   0          80s  			#创建完成,运行中

kubectl get pods -o wide
NAME                    READY   STATUS    RESTARTS   AGE   IP            NODE            NOMINATED NODE
nginx-dbddb74b8-26r9l   1/1     Running   0          10m   172.17.36.2   192.168.80.15   <none>
//READY为1/1,表示这个Pod中有1个容器

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2

//这时在master01节点上查看nginx日志,发现没有权限查看
kubectl logs nginx-dbddb74b8-nf9sk

部署 Dashboard

Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如部署,作业,守护进程等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://NodeIP:30001

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/35382.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

requests---jsonpath在接口自动化中的应用

目录 前言 jsonpath 通过下标提取 通过jsonpath提取 jsonpath的其他用法 通过$获取属性值内容 通过【*】获取对应值 通过切片获取对应值 总结 前言 我们在做接口测试时&#xff0c;大多数返回的都是json属性&#xff0c;我们需要通过接口返回的json提取出来对应的值&am…

浏览器种输入一个url到显示页面全过程

原文合集地址如下&#xff0c;有需要的朋友可以关注 本文地址 合集地址 所谓的‘三颗树’ 在浏览器中&#xff0c;当解析和加载网页时&#xff0c;会形成三个重要的树结构&#xff1a;DOM树、CSSOM树和渲染树&#xff08;Render Tree&#xff09;。这些树结构在网页的渲染和…

基于SQLI的SQL字符型报错注入

基于SQLI的SQL字符型报错注入 一. 实验目的 理解数字型报错SQL注入漏洞点的定位方法&#xff0c;掌握利用手工方式完成一次完整SQL注入的过程&#xff0c;熟悉常见SQL注入命令的操作。 二. 实验环境 渗透主机&#xff1a;KALI平台 用户名: college 密码: 360College 目标网…

web安全php基础_php数据类型

PHP 数据类型 PHP 支持以下几种数据类型: String&#xff08;字符串&#xff09;Integer&#xff08;整型&#xff09;Float&#xff08;浮点型&#xff09;Boolean&#xff08;布尔型&#xff09;Array&#xff08;数组&#xff09;Object&#xff08;对象&#xff09;NULL&…

算法----Nim 游戏

题目 你和你的朋友&#xff0c;两个人一起玩 Nim 游戏&#xff1a; 桌子上有一堆石头。 你们轮流进行自己的回合&#xff0c; 你作为先手 。 每一回合&#xff0c;轮到的人拿掉 1 - 3 块石头。 拿掉最后一块石头的人就是获胜者。 假设你们每一步都是最优解。请编写一个函数&a…

Kubernetes 启动Pod的方法-Pod的调度算法-Pod间的通信-k8s的控制器-Pod资源控制-发布Service服务

目录 Pod 参考文档&#xff1a;Pod | Kubernetes Pod配置文件&#xff1a;simple-pod.yaml 对master进行如下操作 Pod的状态有&#xff1a; 参考文档&#xff1a;(70条消息) Pod生命周期中的状态解释_pod状态_闹玩儿扣眼珠子的博客-CSDN博客 进入Pod内的nginx容器&#…

Linux快速搭建Java环境

1. 安装JDK运行与调试 搭建Java环境 1. 安装JDK 打开命令行执行 sudo apt install default-jdk 有确定的选项直接y就行 安装拓展: 1 . 有时候vscode会自动弹出消息叫你安装拓展,直接点击全部安装就行了 2 . 未弹出或安装失败解决: 打开拓展搜索,把下面的,全部安装就行 这样就可…

Nginx(6)nginx的缓存集成

缓存集成 Nginx缓存集成缓存的概念Nginx的web缓存服务 缓存设置的相关指令Nginx缓存设置案例 Nginx缓存的清除Nginx设置资源不缓存 Nginx缓存集成 缓存的概念 缓存就是数据交换的缓冲区(称作Cache)&#xff0c;当用户要获取数据的时候&#xff0c;会先从缓存中去查询获取数据…

TikTok将在10月份之前免除佣金并提供补贴!

TikTok 因其便捷的结账方式越来越吸引美容品牌&#xff0c;Elf Beauty Laura Mercier、BareMinerals KimChi Chic Beauty 和 Skin Gym 等美容品牌已经接受了社交网络的结账功能。在这种情况下&#xff0c;该工具允许消费者将多个品牌的产品添加到应用内购物车中。 在巴西&…

动态路由,微信小程序绑定

■登录成功之后添加动态路由 ●登录的时候会获取到它的菜单配置■动态路由 | Vue Router <view wx:for"{{list}}">{{index}}--- {{item.name}} </view><view wx:for"{{list}}" wx:for-item "ttt" wx:for-index"num"&…

(02)Cartographer源码无死角解析-(79) ROS服务→子图压缩与服务发送

讲解关于slam一系列文章汇总链接:史上最全slam从零开始&#xff0c;针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下: (02)Cartographer源码无死角解析- (00)目录_最新无死角讲解&#xff1a;https://blog.csdn.net/weixin_43013761/article/details/127350885 文…

机器学习——掌握决策树ID3算法的原理,通过增益熵实现手工推导的过程。

文章目录 决策树介绍优缺点ID3算法原理举例 决策树的构建1、特征选择&#xff08;1&#xff09;香农熵&#xff08;2&#xff09;信息增益 2、决策树的生成3、决策树的修剪 总结&#xff1a;参考文献 决策树 介绍 决策树(decision tree)是一种基本的分类与回归方法。ID3是其中…

Linux学习之分区和挂载磁盘配额

先分区然后格式化。 fdisk /dev/sdb开始分区。 输入p&#xff0c;然后按下Enter&#xff0c;可以查看当前设备的分区情况。 输入d&#xff0c;然后按下Enter&#xff0c;就可以删除上边的分区&#xff0c;要是有多个分区&#xff0c;会让你选择删除哪个分区。 输入n&…

mysql基础5——mysql主从

文章目录 一、基本了解二、主从原理三、主从复制3.1 从无到有3.1.1 服务器初始化3.1.2 配置主库3.1.3 配置从库3.1.4 效果验证 3.2 从有到无3.2.1 主库全备&#xff0c;并同步到从库3.2.2 配置主库3.2.3 配置从库3.2.4 效果验证 四、数据库运维4.1 几个参数4.2 查看进程列表 一…

MATLAB | 如何使用MATLAB获取顶刊《Nature》全部绘图(附带近3年全部图像)

我出了如何使用MATLAB获取期刊《Cell》全部绘图&#xff0c;立马就有粉丝问《Nature》、《Sience》、《PNAS》啥的会不会安排&#xff0c;这期就给大家安排《Nature》全部绘图获取&#xff0c;之后其他期刊也会慢慢安排&#xff0c;但是不会一次性全出完(毕竟不能抓住一个主题就…

【Java基础教程】(五)程序概念篇 · 下:夯实基础!全面解析Java程序的逻辑控制体:顺序、选择与循环结构~

Java基础教程之程序概念 下 本节学习目标1️⃣ 程序逻辑控制1.1 顺序结构1.2 分支结构1.2.1 if 选择结构1.2.2 switch 选择结构 1.3 循环结构1.3.1 while 循环1.3.2 for 循环1.3.3 循环控制 &#x1f33e; 总结 本节学习目标 掌握Java中分支结构、循环结构、循环控制语法的使…

Squid 缓存代理--反向代理

Squid 缓存代理–反向代理 反向代理&#xff1a;如果Squid反向代理服务器中缓存了该请求的资源&#xff0c;则将该请求的资源直接返回给客户端&#xff1a;否则反向代理服务器将向后台的WEB服务器请求资源&#xff0c;然后将请求的应答返回给客户端&#xff0c;同时也将应答缓…

Django框架-11

聚合查询 1.聚合函数 使用aggregate()过滤器调用聚合函数。聚合函数包括&#xff1a;Avg 平均&#xff0c;Count 数量&#xff0c;Max 最大&#xff0c;Min 最 小&#xff0c;Sum 求和&#xff0c;被定义在django.db.models中。 例&#xff1a;查询图书的总阅读量。 from mo…

如何确定活动隔断整体色调

确定活动的整体色调可以通过以下几个步骤&#xff1a; 1. 确定主题或目标&#xff1a;首先要明确活动的主题或目标&#xff0c;这将有助于确定活动需要传达的情感或氛围。 2. 考虑活动类型&#xff1a;根据活动的类型&#xff0c;例如婚礼、生日派对、企业活动等&#xff0c;可…

vue3+pinia用户信息持久缓存(token)的问题

vue3pinia用户信息持久缓存&#xff08;token)的问题 对博主来说&#xff0c;这是个相当复杂的问题。 当初在使用vue2vuex进行用户信息持久登录时&#xff0c;写了不下3篇博客&#xff0c;确实是解决了问题&#xff0c;博客链接如下 vue存储和使用后端传递过来的tokenvue中对…