应用机器学习的建议

一、决定下一步做什么

        在你得到你的学习参数以后,如果你要将你的假设函数放到一组新的房屋样本上进行测试,假如说你在预测房价时产生了巨大的误差,你想改进这个算法,接下来应该怎么办?实际上你可以考虑先采用下面的几种方法:

  1. 获得更多的训练实例

  2. 尝试减少特征的数量

  3. 尝试获得更多的特征

  4. 尝试增加多项式特征

  5. 尝试减少正则化程度\lambda

  6. 尝试增加正则化程度\lambda

我们不应该随机选择上面的某种方法来改进我们的算法,而是运用一些机器学习诊断法来帮助我们知道上面哪些方法对我们的算法是有效的。“诊断法”的意思是这是一种测试法,你通过执行这种测试,能够深入了解某种算法到底是否有用,这通常也能够告诉你,要想改进一种算法的效果,什么样的尝试才是有意义的

二、评估一个假设

        在本节内容中我想介绍一下怎样用你学过的算法来评估假设函数,在之后的内容中,我将以此为基础来讨论如何避免过拟合和欠拟合的问题

        当我们确定学习算法的参数的时候,我们考虑的是选择参数来使训练误差最小化,有人认为得到一个非常小的训练误差一定是一件好事,但我们已经知道,仅仅是因为这个假设具有很小的训练误差,并不能说明它就一定是一个好的假设函数,而且我们也学习了过拟合假设函数的例子,所以这推广到新的训练集上是不适用的。

        那么,你该如何判断一个假设函数是过拟合的呢?对于某个简单的例子,我们可以对假设函数h(x)进行画图,然后观察图形趋势,但对于特征变量不止一个的一般情况,想要通过画出假设函数来进行观察,就会变得很难甚至是不可能实现,因此,我们需要另一种方法来评估我们的假设函数。为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用70%的数据作为训练集,用剩下30%的数据作为测试集,很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。

测试集评估在通过训练集让我们的模型学习得出其参数后,对测试集运用该模型,我们有两种方式计算误差:

  • 对于线性回归模型,我们利用测试集数据计算代价函数J

  • 对于逻辑回归模型,我们除了可以利用测试数据集来计算代价函数外:

  • 还可以对于每一个测试集实例计算误分类的比例:

    然后对计算结果求平均

三、模型选择和交叉验证集

假设我们要在10个不同次数的二项式模型之间进行选择:

显然次数越高的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况,我们应该选择一个更能适应一般情况的模型,因此我们需要使用交叉验证集来帮助选择模型,即:使用60%的数据作为训练集,使用 20%的数据作为交叉验证集,使用20%的数据作为测试集

模型选择的方法为:

  1. 使用训练集训练出10个模型

  2. 用10个模型分别对交叉验证集计算得出交叉验证误差(代价函数的值)

  3. 选取代价函数值最小的模型

  4. 用步骤3中选出的模型对测试集计算得出推广误差(代价函数的值)

 

四、诊断偏差和方差

推荐一篇写得很好的关于偏差和方差的文章:机器学习 -偏差与方差 - 知乎

        当你运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况:要么是偏差比较大,要么是方差比较大。换句话说,出现的情况要么是欠拟合,要么是过拟合问题。那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关?搞清楚这一点非常重要,因为能判断出现的情况是这两种情况中的哪一种其实是一个很有效的指示器,指引着可以改进算法的最有效的方法。

Bias(偏差):用所有可能的训练数据集训练出的所有模型的输出的平均值与真实模型的输出值之间的差异

Variance(方差):是不同的训练数据集训练出的模型输出值之间的差异

我们通常会通过将训练集和交叉验证集的代价函数误差与多项式的次数绘制在同一张图表上来帮助分析:(d:多项式的最高次数)

对于训练集,当 d 较小时,模型拟合程度更低,误差较大;随着 d 的增长,拟合程度提高,误差减小;对于交叉验证集,当 d 较小时,模型拟合程度低,误差较大;但是随着 d 的增长,误差呈现先减小后增大的趋势,转折点是我们的模型开始过拟合训练数据集的时候

根据上面的图表,我们知道:

训练集误差和交叉验证集误差近似时:高偏差/欠拟合

交叉验证集误差远大于训练集误差时:高方差/过拟合

五、正则化和偏差/方差

        在我们训练模型的过程中,一般会使用一些正则化方法来防止过拟合,但是我们可能会正则化的程度太高或太小了,即我们在选择λ的值时也需要思考与刚才选择多项式模型次数类似的问题

我们选择一系列的想要测试的\lambda值,通常是 0-10之间的呈现2倍关系的值,如:0,0.01,0.02,0.04,0.08,0.15,0.32,0.64,1.28,2.56,5.12,10共12个),我们同样把数据分为训练集、交叉验证集和测试集

选择\lambda的方法为:

  1. 使用训练集训练出12个不同程度正则化的模型

  2. 用12个模型分别对交叉验证集计算的出交叉验证误差

  3. 选择得出交叉验证误差最小的模型

  4. 运用步骤3中选出模型对测试集计算得出推广误差,我们也可以同时将训练集和交叉验证集模型的代价函数误差与λ的值绘制在一张图表上:

• 当$\lambda$较小时,训练集误差较小而交叉验证集误差较大

• 随着 $\lambda$的增加,训练集误差不断增加,而交叉验证集误差则是先减小后增加

六、学习曲线

        学习曲线就是一种来判断某一个学习算法是否处于偏差、方差问题的很好的工具,学习曲线是将训练集误差和交叉验证集误差作为训练集实例数量(m)的函数绘制的图表。如果我们有100行数据,我们从1行数据开始,逐渐学习更多行的数据。思想是:当训练较少行数据的时候,训练的模型将能够非常完美地适应较少的训练数据,但是训练出来的模型却不能很好地适应交叉验证集数据或测试集数据

 

如何利用学习曲线识别高偏差/欠拟合:作为例子,我们尝试用一条直线来适应下面的数据,可以看出,无论训练集有多么大误差都不会有太大改观,也就是说在高偏差/欠拟合的情况下,增加数据到训练集不一定能有帮助

如何利用学习曲线识别高方差/过拟合:假设我们使用一个非常高次的多项式模型,并且正则化非常小,可以看出,当交叉验证集误差远大于训练集误差时,往训练集增加更多数据可以提高模型的效果,也就是说在高方差/过拟合的情况下,增加更多数据到训练集可能可以提高算法效果

七、回答开头的问题

        我们已经介绍了怎样评价一个学习算法,我们讨论了模型选择问题、偏差和方差的问题。那么这些诊断法怎样帮助我们判断,哪些方法可能有助于改进学习算法的效果,而哪些可能是徒劳的呢?让我们再次回到最开始的例子在那里寻找答案,回顾开头提出的六种可选的下一步,让我们来看一看我们在不同的情况下应该怎样选择:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/353374.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度强化学习(王树森)笔记03

深度强化学习(DRL) 本文是学习笔记,如有侵权,请联系删除。本文在ChatGPT辅助下完成。 参考链接 Deep Reinforcement Learning官方链接:https://github.com/wangshusen/DRL 源代码链接:https://github.c…

STM正点mini-新建工程模板,GPIO及寄存器(介绍)

一.新建工程模板(基于固件库) 1.1库函数与寄存器的区别 这里的启动文件都是根据容量来进行区分的 对MDK而言即使include了,也不知道在哪里找头文件 STM32F10X_HD,USE_STDPERIPH_DRIVER 二.新建工程模板(基于寄存器) 上面的大部分配置与固件库的一样 具体可以看手…

【面试】测试开发面试题

帝王之气,定是你和万里江山,我都护得周全 文章目录 前言1. 网络原理get与post的区别TCP/IP各层是如何传输数据的IP头部包含哪些内容TCP头部为什么有浮动网络层协议1. 路由协议2. 路由信息3. OSPF与RIP的区别Cookie与Session,Token的区别http与…

Spring5系列学习文章分享---第五篇(事务概念+特性+案例+注解声明式事务管理+参数详解 )

目录 事务事务概念什么是事务事务四个特性(ACID) 搭建事务操作环境Spring 事务管理介绍注解声明式事务管理声明式事务管理参数配置XML 声明式事务管理事务操作(完全注解声明式事务管理)感谢阅读 开篇: 欢迎再次来到 Spring 5 学习…

Java笔记 --- 一、双列集合

一、双列集合 双列集合的特点 Map 创建Map对象时,要规定键和值的泛型 Map是一个接口,不能直接创建,要创建实例化对象 Map的遍历 通过键找值 先获取到键的对象,并放到一个单列集合中(map.KeySet()方法)…

【Git】项目管理笔记

文章目录 本地电脑初始化docker报错.gitignoregit loggit resetgit statusgit ls-filesgit rm -r -f --cached拉取仓库文件更新本地的项目报错处理! [rejected] master -> master (fetch first)gitgitee.com: Permission denied (publickey).error: remote origin already e…

NVIDIA Jetson Orin Nano 开发者套件 - 加速入门级边缘 AI 应用

系列文章目录 前言 一、将人工智能概念转化为现实 英伟达™(NVIDIA)Jetson Orin Nano 开发者套件为创建入门级人工智能机器人、智能无人机和智能相机设定了新标准。它还简化了开始使用 Jetson Orin Nano 系列模块的过程。紧凑的设计、大量的连接器和高达…

从比亚迪的整车智能战略,看王传福的前瞻市场布局

众所周知,作为中国新能源汽车的代表企业,比亚迪在中国乃至全球的新能源汽车市场一直都扮演着引领者的角色。2024年新年伊始,比亚迪又为新能源汽车带来了一项重磅发布。 整车智能才是真智能 近日,在“2024比亚迪梦想日”上&#xf…

CSS 多色正方形上升

<template><view class="loop cubes"><view class="item cubes"></view> <!-- 方块1 --><view class="item cubes"></view> <!-- 方块2 --><view class="item cubes"></vie…

按配置数据绘制配置型地图marker的icon,自定义marker

一、需求 需要自定义配置数据的marker&#xff0c;其中图片内容要灵活可配置自动生成。此处项目用的百度地图。 效果图&#xff1a; 二、思路 用背景图canvas绘制数字的方式生成icon的图片资源。 再将icon生成对应地图marker。 三、代码 canvasImg.js <!-- * descrip…

[NISACTF 2022]sign-ezc++

IDA打开 int __cdecl main(int argc, const char **argv, const char **envp) {Human *v3; // rbxHuman *v4; // rbxchar v6[23]; // [rsp20h] [rbp-20h] BYREFchar v7; // [rsp37h] [rbp-9h] BYREFHuman *v8; // [rsp38h] [rbp-8h]_main(argc, argv, envp);std::allocator<…

明源云ERP系统接口管家 ApiUpdate.ashx 任意文件上传漏洞(QVD-2023-20382)

0x01 产品简介 明源云ERP系统接口管家是明源云ERP提供的一个功能,用于管理和处理系统与外部系统之间的接口集成。它充当了ERP系统与其他应用程序、第三方系统或服务之间的桥梁,负责数据的传输、交换和同步。通过接口管家,用户可以配置和管理不同接口的参数、调度和监控接口…

操作系统-线程的实现方式和多线程模型(用户级线程 内核级线程 多线程模型的情况)和线程的状态,转换,组织,控制

文章目录 线程的实现方式和多线程模型总览线程的实现方式用户级线程内核级线程多线程模型一对一多对一多对多 小结 线程的状态,转换,组织,控制总览 线程的状态与转换线程的组织与控制 线程的实现方式和多线程模型 总览 线程的实现方式 用户级线程 程序自己通过自己设计的线程…

PCIE 4.0 Equalizaiton(LTSSM 均衡流程)

1. 均衡 在Tx端有FFE&#xff08;Feed Forward Equalizer&#xff0c;前馈均衡器&#xff09;&#xff1b;在Rx端有&#xff1a;CTLE&#xff08;Continuous Time Linear Equalizer&#xff0c;连续时间线性均衡器&#xff09;和DFE&#xff08;Decision Feedback Equalizer&a…

SpringBoot项目配置SSL后,WebSocket连接失败的解决方案

SpringBoot项目配置SSL后&#xff0c;WebSocket连接应使用wss协议&#xff0c;而不是ws协议。在前端配置WebSocket时&#xff0c;URL以wss://开头。

【C++】C++ 入门 — 命名空间,输入输出,函数新特性

C 1 前言2 命名空间2.1 概念引入2.2 开始使用2.3 投入应用 3 输入与输出3.1 基础知识3.2 开始使用3.3 注意局限 4 函数新特性4.1 缺省参数4.1.1 开始使用4.1.2 注意事项 4.2 函数重载4.2.1 开始使用4.2.2 如何实现 Thanks♪(&#xff65;ω&#xff65;)&#xff89;谢谢阅读下…

day33_js

今日内容 0 复习昨日 1 JS概述 2 JS的引入方式 3 JS语法 3.1 变量 3.2 基本数据类型 3.3 引用类型 3.4 数组类型 3.5 日期类型 3.6 运算符(算术运算,逻辑,关系运算,三目运算) 3.7 分支 3.8 循环 3.9 函数(重点) 3 常见弹窗函数 alter,confirm,prompt 0 复习昨日 1 盒子模型 对d…

C语言与操作符相关的经典例题

目录 一道变态的面试题&#xff1a;不能创建临时变量&#xff08;第三个变量&#xff09;&#xff0c;实现两个数的交换。 编写代码实现&#xff1a;求一个整数存储在内存中的二进制中1的个数。 二进制位置0或者置1 如果以下的知识点不是很清楚的可以去看这篇文章&#xff1…

代码随想录算法训练营第十五天| 102. 二叉树的层序遍历、226.翻转二叉树、101. 对称二叉树

文章目录 1.二叉树的层序遍历2.翻转二叉树3.对称二叉树 1.二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null…

3. SQL 语言

重点&#xff1a; MySQL 的 三种安装方式&#xff1a;包安装&#xff0c;二进制安装&#xff0c;源码编译安装。 MySQL 的 基本使用 MySQL 多实例 DDLcreate alter drop DML insert update delete DQL select 3&#xff09;SQL 语言 3.1&#xff09;关系型数据库的常见…