pytorch快速入门中文——07(TensorBoard)

使用 TensorBoard 可视化模型,数据和训练

原文:https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

在 60 分钟突击中,我们向您展示了如何加载数据,如何通过定义为nn.Module子类的模型提供数据,如何在训练数据上训练该模型以及在测试数据上对其进行测试。 为了了解发生的情况,我们在模型训练期间打印一些统计数据,以了解训练是否在进行中。 但是,我们可以做得更好:PyTorch 与 TensorBoard 集成在一起,TensorBoard 是一种工具,用于可视化神经网络训练运行的结果。 本教程使用 Fashion-MNIST 数据集说明了其某些功能,可以使用torchvision.datasets将其读入 PyTorch。

在本教程中,我们将学习如何:

  1. 读取数据并进行适当的转换(与先前的教程几乎相同)。
  2. 设置 TensorBoard。
  3. 写入 TensorBoard。
  4. 使用 TensorBoard 检查模型架构。
  5. 使用 TensorBoard 来创建我们在上一个教程中创建的可视化的交互式版本,并使用较少的代码

具体来说,在第 5 点,我们将看到:

  • 有两种方法可以检查我们的训练数据
  • 在训练模型时如何跟踪其表现
  • 在训练后如何评估模型的表现。

我们将从 CIFAR-10 教程中类似的样板代码开始:

# imports
import matplotlib.pyplot as plt
import numpy as np

import torch
import torchvision
import torchvision.transforms as transforms

import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# transforms
transform = transforms.Compose(
    [transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))])

# datasets
trainset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=True,
    transform=transform)
testset = torchvision.datasets.FashionMNIST('./data',
    download=True,
    train=False,
    transform=transform)

# dataloaders
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                        shuffle=True, num_workers=2)

testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                        shuffle=False, num_workers=2)

# constant for classes
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
        'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')

# helper function to show an image
# (used in the `plot_classes_preds` function below)
def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

我们将在该教程中定义一个类似的模型架构,仅需进行少量修改即可解决以下事实:图像现在是一个通道而不是三个通道,而图像是28x28而不是32x32

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

我们将在之前定义相同的optimizercriterion

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

1. TensorBoard 设置

现在,我们将设置 TensorBoard,从torch.utils导入tensorboard并定义SummaryWriter,这是将信息写入 TensorBoard 的关键对象。

from torch.utils.tensorboard import SummaryWriter

# default `log_dir` is "runs" - we'll be more specific here
writer = SummaryWriter('runs/fashion_mnist_experiment_1')

请注意,仅此行会创建一个runs/fashion_mnist_experiment_1文件夹。

2. 写入 TensorBoard

现在,使用make_grid将图像写入到 TensorBoard 中,具体来说就是网格。

# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()

# create grid of images
img_grid = torchvision.utils.make_grid(images)

# show images
matplotlib_imshow(img_grid, one_channel=True)

# write to tensorboard
writer.add_image('four_fashion_mnist_images', img_grid)

正在运行

tensorboard --logdir=runs

从命令行,然后导航到https://localhost:6006应该显示以下内容。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rUfpYws8-1688003035538)(img/8b09d6361316e495383ceedf9b8407ea.png)]

现在您知道如何使用 TensorBoard 了! 但是,此示例可以在 Jupyter 笔记本中完成-TensorBoard 真正擅长的地方是创建交互式可视化。 接下来,我们将介绍其中之一,并在本教程结束时介绍更多内容。

3. 使用 TensorBoard 检查模型

TensorBoard 的优势之一是其可视化复杂模型结构的能力。 让我们可视化我们构建的模型。

writer.add_graph(net, images)
writer.close()

现在刷新 TensorBoard 后,您应该会看到一个Graphs标签,如下所示:

在这里插入图片描述

继续并双击Net以展开它,查看构成模型的各个操作的详细视图。

TensorBoard 具有非常方便的功能,可在低维空间中可视化高维数据,例如图像数据。 接下来我们将介绍这一点。

4. 在 TensorBoard 中添加“投影仪”

我们可以通过add_embedding方法可视化高维数据的低维表示

# helper function
def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]

# select random images and their target indices
images, labels = select_n_random(trainset.data, trainset.targets)

# get the class labels for each image
class_labels = [classes[lab] for lab in labels]

# log embeddings
features = images.view(-1, 28 * 28)
writer.add_embedding(features,
                    metadata=class_labels,
                    label_img=images.unsqueeze(1))
writer.close()

现在,在 TensorBoard 的“投影仪”选项卡中,您可以看到这 100 张图像-每个图像 784 维-向下投影到三维空间中。 此外,这是交互式的:您可以单击并拖动以旋转三维投影。 最后,一些技巧可以使可视化效果更容易看到:选择左上方的“颜色:标签”,以及启用“夜间模式”,这将使图像更容易看到,因为它们的背景是白色的:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-POygDwFp-1688003035542)(img/f4990a0920dff7e4647a23cfc1639a8a.png)]

现在我们已经彻底检查了我们的数据,让我们展示了 TensorBoard 如何从训练开始就可以使跟踪模型的训练和评估更加清晰。

5. 使用 TensorBoard 跟踪模型训练

在前面的示例中,我们仅每 2000 次迭代打印该模型的运行损失。 现在,我们将运行损失记录到 TensorBoard 中,并通过plot_classes_preds函数查看模型所做的预测。

# helper functions

def images_to_probs(net, images):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = net(images)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = np.squeeze(preds_tensor.numpy())
    return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]

def plot_classes_preds(net, images, labels):
    '''
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "images_to_probs" function.
    '''
    preds, probs = images_to_probs(net, images)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in np.arange(4):
        ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
        matplotlib_imshow(images[idx], one_channel=True)
        ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
            classes[preds[idx]],
            probs[idx] * 100.0,
            classes[labels[idx]]),
                    color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig

最后,让我们使用与之前教程相同的模型训练代码来训练模型,但是每 1000 批将结果写入 TensorBoard,而不是打印到控制台。 这是通过add_scalar函数完成的。

此外,在训练过程中,我们将生成一幅图像,显示该批量中包含的四幅图像的模型预测与实际结果。

running_loss = 0.0
for epoch in range(1):  # loop over the dataset multiple times

    for i, data in enumerate(trainloader, 0):

        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 1000 == 999:    # every 1000 mini-batches...

            # ...log the running loss
            writer.add_scalar('training loss',
                            running_loss / 1000,
                            epoch * len(trainloader) + i)

            # ...log a Matplotlib Figure showing the model's predictions on a
            # random mini-batch
            writer.add_figure('predictions vs. actuals',
                            plot_classes_preds(net, inputs, labels),
                            global_step=epoch * len(trainloader) + i)
            running_loss = 0.0
print('Finished Training')

现在,您可以查看“标量”选项卡,以查看在 15,000 次训练迭代中绘制的运行损失:

在这里插入图片描述

此外,我们可以查看整个学习过程中模型在任意批量上所做的预测。 查看“图像”选项卡,然后在“预测与实际”可视化条件下向下滚动以查看此内容; 这表明,例如,仅经过 3000 次训练迭代,该模型就已经能够区分出视觉上截然不同的类,例如衬衫,运动鞋和外套,尽管它并没有像后来的训练那样有信心:

在这里插入图片描述

在之前的教程中,我们研究了模型训练后的每类准确率; 在这里,我们将使用 TensorBoard 绘制每个类别的精确调用曲线(在这里解释)。

6. 使用 TensorBoard 评估经过训练的模型

# 1\. gets the probability predictions in a test_size x num_classes Tensor
# 2\. gets the preds in a test_size Tensor
# takes ~10 seconds to run
class_probs = []
class_preds = []
with torch.no_grad():
    for data in testloader:
        images, labels = data
        output = net(images)
        class_probs_batch = [F.softmax(el, dim=0) for el in output]
        _, class_preds_batch = torch.max(output, 1)

        class_probs.append(class_probs_batch)
        class_preds.append(class_preds_batch)

test_probs = torch.cat([torch.stack(batch) for batch in class_probs])
test_preds = torch.cat(class_preds)

# helper function
def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0):
    '''
    Takes in a "class_index" from 0 to 9 and plots the corresponding
    precision-recall curve
    '''
    tensorboard_preds = test_preds == class_index
    tensorboard_probs = test_probs[:, class_index]

    writer.add_pr_curve(classes[class_index],
                        tensorboard_preds,
                        tensorboard_probs,
                        global_step=global_step)
    writer.close()

# plot all the pr curves
for i in range(len(classes)):
    add_pr_curve_tensorboard(i, test_probs, test_preds)

现在,您将看到一个PR Curves选项卡,其中包含每个类别的精确调用曲线。 继续四处戳; 您会发现在某些类别中,模型的“曲线下面积”接近 100%,而在另一些类别中,该面积更低:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iG7KQZTF-1688003035545)(img/d15de2be2b754f9a4f46418764232b5e.png)]

这是 TensorBoard 和 PyTorch 与之集成的介绍。 当然,您可以在 Jupyter 笔记本中完成 TensorBoard 的所有操作,但是使用 TensorBoard 时,默认情况下会获得交互式的视觉效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/35063.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机体系结构基础知识介绍之缓存性能的十大进阶优化之编译器控制的预取和利用HBM扩展内存层次(七)

优化九:编译器控制的预取以减少丢失惩罚或丢失率 硬件预取的替代方案是编译器在处理器需要数据之前插入预取指令来请求数据。 预取有两种类型: ■ 寄存器预取将值加载到寄存器中。 ■ 高速缓存预取仅将数据加载到高速缓存。 这两种类型都可以分为有错…

跟我一起从零开始学python(一)编程语法必修

前言 随着互联网的高速发展,python市场越来越大,也越来越受欢迎,主要源于它:易学易用,通用性广,时代需要,源代码的开放以及人工智能浪潮,接来下我们就从这几个方向谈谈为何python越…

17 MFC进程通信

文章目录 剪切板管道匿名管道父进程写入数据子进程读出数据 命名管道 邮槽邮槽服务器邮槽客户端 剪切板 设置界面 发送 //设置剪切板数据 void CClipboardDlg::OnBnClickedBtnSend() {UpdateData(TRUE);if (m_strSend.IsEmpty()){MessageBox(L"请输入需要设置的文本&quo…

微信小程序如何进行开发?

文章目录 0.引言1.注册微信公众平台账号2.准备微信开发者工具3.创建微信小程序并预览 0.引言 笔者编程一般编得较多的是桌面软件,有时也会编手机软件,这些软件都必须安装才能使用,这限制了软件的推广。而现有社交软件如微信使用得较广泛&…

Linux的编译器——gcc/g++(预处理、编译、汇编、链接)

文章目录 一.程序实现的两个环境二.gcc如何完成1.预处理2.编译3.汇编4.链接 三.动态库与静态库对比下二者生成的文件大小 四.gcc常用选项 前言: 本文主要认识与学习Linux环境下常用的编译器——gcc(编译C代码)/g(编译C代码&#x…

深度学习--神经网络全面知识点总结(持续更新中)

文章目录 神经网络基础1.1 什么是神经网络?1.2 神经元和激活函数1.3 前向传播和反向传播1.4 损失函数和优化算法 深度神经网络2.1 卷积神经网络(CNN)2.2 循环神经网络(RNN)2.3 长短期记忆网络(LSTM&#xf…

凝思系统docker离线安装

# linux离线安装docker (18.03.1-ce) ## 解压,得到docker文件夹 tar xzvf docker-18.03.1-ce.tgz ## 将docker文件夹里面的所有内容复制到/usr/bin目录 sudo cp docker/* /usr/bin/ ## 开启docker守护进程 sudo dockerd & 当终端中显示【API list…

Mathtype7Mac苹果ios简体中文版

对于很多人来说,每次编辑文字的时候遇到公式简直就是噩梦。像那些复杂的数学、物理还有化学公式,太难编辑出来了。 那么我们该怎么解决这些难题呢?其实很简单,用公式编辑器就行了。 公式编辑器,是一种工具软件&#…

网络安全之反序列化漏洞分析

简介 FastJson 是 alibaba 的一款开源 JSON 解析库,可用于将 Java 对象转换为其 JSON 表示形式,也可以用于将 JSON 字符串转换为等效的 Java 对象分别通过toJSONString和parseObject/parse来实现序列化和反序列化。 使用 对于序列化的方法toJSONStrin…

卷积神经网络| 猫狗系列【AlexNet】

首先,搭建网络: AlexNet神经网络原理图: net代码:【根据网络图来搭建网络,不会的看看相关视频会好理解一些】 import torchfrom torch import nnimport torch.nn.functional as Fclass MyAlexNet(nn.Module): def…

Flutter学习四:Flutter开发基础(六)调试Flutter应用

目录 0 引言 1 Flutter异常捕获 1.1 Dart单线程模型 1.2 Flutter异常捕获 1.2.1 Flutter框架异常捕获 1.2.1.1 Flutter默认异常捕获方式 1.2.1.2 自己捕获异常并上报 1.2.2 其他异常捕获与日志收集 1.2.3 最终的错误上报代码 0 引言 本文是对第二版序 | 《Flutter实…

《Lua程序设计》--学习2

表 Lua语言中的表本质上是一种辅助数组(associative array),这种数组不仅可以使用数值作为索引,也可以使用字符串或其他任意类型的值作为索引(nil除外)。 Lua语言中的表要么是值要么是变量,它…

防火墙基本原理详解

概要 防火墙是可信和不可信网络之间的一道屏障,通常用在LAN和WAN之间。它通常放置在转发路径中,目的是让所有数据包都必须由防火墙检查,然后根据策略来决定是丢弃或允许这些数据包通过。例如: 如上图,LAN有一台主机和一…

【macOS 系列】如何在mac 邮件客户端配置QQ邮箱和第二个账号

文章目录 一、配置QQ邮箱二、添加新的账户 一、配置QQ邮箱 需要在QQ邮箱账户设置中开启: 开启时,会让你发短信到指定号码,然后就会弹出一个验证码 也就是添加邮箱的密码不是QQ密码,而是这个验证码,这个可以生成多个&…

【OpenGL】读取视频并渲染

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍读取视频并渲染。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更新不迷路&#…

ELK实验部署过程

ELK集群部署环境准备 配置ELK日志分析系统 192.168.1.51 elk-node1 es、logstash、kibana 192.168.1.52 elk-node2 es、logstash 192.168.1.53 apache logstash (我这里是把虚拟机的配置全部都改为2核3G的) 2台linux 第1台:elk-nod…

【数据库原理】MyShop 商城数据库设计(SQL server)

MyShop 商城数据库设计 项目背景定义课程设计要求概念结构设计逻辑结构设计数据结构的描述用户信息数据结构的描述地址信息数据结构的描述商品类别数据结构的描述商品数据结构的描述购物车数据结构的描述订单数据结构的描述订单项数据结构的描述 物理结构设计用户表结构地址表结…

STM32——GPIO配置

文章目录 一、GPIO八种模式1. 输入2. 输出3. 如何选择GPIO的模式 二、库函数GPIO配置1. 配置代码2.参数设置 一、GPIO八种模式 GPIO的输入输出是对于STM32单片机来说的。以下仅为个人粗略笔记,内部电路分析可参考博客https://blog.csdn.net/k666499436/article/det…

计算机网络_ 1.3 网络核心(数据交换_电路交换_多路复用)

计算机网络_数据交换_电路交换_多路复用 多路复用频分多路复用FDM时分多路复用TDM波分多路复用WDM码分多路复用CDM 多路复用 多路复用(Multiplexing),简称复用,是通信技术的基本概念。 链路/网络资源(如带宽&#x…

【K8S系列】如何高效查看 k8s日志

序言 你只管努力,其他交给时间,时间会证明一切。 文章标记颜色说明: 黄色:重要标题红色:用来标记结论绿色:用来标记一级论点蓝色:用来标记二级论点 Kubernetes (k8s) 是一个容器编排平台&#x…