基于minsit数据集的图像分类任务|CNN简单应用项目

Github地址

Image-classification-task-based-on-minsit-dataseticon-default.png?t=N5K3https://github.com/Yufccode/CollegeWorks/tree/main/ImageProcessing/Image-classification-task-based-on-minsit-dataset

README

摘要

本次实验报告用两种方式完成了基于minst数据集完成了图像的分类任务

第一种方式采用课件所讲述的差值法对训练集里的每一张图片进行了预测,并最后得出总体的测试acc,由于只是简单采用差值法对图片进行预测,没有作其他的操作,因此acc只达到了16.8%

第二种方式采用了深度学习,2d卷积神经网络的方式进行图像分类。acc达到了0.98267

实验内容及目的

实验内容为通过差值法和2dCNN的方法,对每一类1000张,共10类的minsit数据集作分类任务。实验目的是为:掌握Matlab图片导入、分析和操作的方式。

实验相关原理描述

差值法的原理:

本质上是矩阵之间的相似性,相似度最大的即为预测类别,其中公式如所示

similarity = \frac{\alpha }{\begin{Vmatrix} (matrix1-matrix2) \end{Vmatrix}} \quad (\alpha \in R)

该模型不需要进行训练,在测试的时候,每一张图片所对应的矩阵与哪一个带有标签的矩阵相似度最大即可,则该图片的预测结果即位对应的标签值。

 2dCNN法的原理:

通过2d卷积神经网络,让学习器学习minst数据集图像特征,最后根据学习到的特征进行分类的预测。

CNN网络模型图如图所示:

实验过程

差值法

在数据处理方面,在使用差值法进行图像分类时,我利用了Python语言对所有图片进行打标签工作,以便于Matlab程序读取每一张图片及其相对应的标签,代码如下:

import pandas as pd
import os
import numpy as np

csv_path = r'/Users/demac/我的文件/SYSU/4. 2022第二学期/图像处理实验/实验一/图像实验一/number_recognize/Data.csv'
df = pd.read_csv(csv_path)
arr = np.array(df)
arr = arr.tolist()
f = open(r'/Users/demac/我的文件/SYSU/4. 2022第二学期/图像处理实验/实验一/图像实验一/number_recognize/Data.txt', 'w')

for cur_label in range(0, 10):
    for root, dirs, files in os.walk(fr"/Users/demac/我的文件/SYSU/4. 2022第二学期/图像处理实验/实验一/图像实验一/number_recognize/train_dataset/{cur_label}"):
        for file in files:
            # 获取文件路径
            path = os.path.join(root, file)
            # f.write(path + '\n')
            new_row = [path, cur_label]
            arr.append(new_row)

arr = np.array(arr)
df = pd.DataFrame(arr)
df.to_csv(csv_path)
print()

分类代码如下: 

clear all;
opts = delimitedTextImportOptions("NumVariables", 3);

% 指定范围和分隔符
opts.DataLines = [2, Inf];
opts.Delimiter = ",";

% 指定列名称和类型
opts.VariableNames = ["VarName1", "VarName2", "VarName3"];
opts.VariableTypes = ["double", "string", "double"];

% 指定文件级属性
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

% 指定变量属性
opts = setvaropts(opts, "VarName2", "WhitespaceRule", "preserve");
opts = setvaropts(opts, "VarName2", "EmptyFieldRule", "auto");
opts = setvaropts(opts, ["VarName1", "VarName3"], "ThousandsSeparator", ",");

% 导入数据
Data = readtable("Data.csv", opts)

% 数据预处理
clear opts
array = table2array(Data);
% 此时array里面存的就是路径和标签
% 在所有数据中取出9张作为label比对图片
img_model = {};
idx = 1;
for i = 1:9
    img_model{i} = imread(array(idx,2)); 
    idx = idx+1000;
end
% img_model已经处理好了
开始test
correct = 0;
for i = 1:length(array)
    true = array(i,3);
    img = imread(array(i,2));
    pred_idx = -1;
    min_err = 100000;
    for j = 1:length(img_model)
        error = count_err(img_model{j},img);
        if(error < min_err)
            min_err = error;
            pred_idx = j - 1;
        end
    end
    if pred_idx == -1
        disp("error");
    end
    if pred_idx == str2num(true)
        % 代表预测正确
        correct = correct + 1;
    end
end
disp(correct);
disp("最终的准确率为: " + num2str(correct/length(array)));

function error = count_err(img1,img2)
    error = norm(double(img1) - double(img2));
end

2dCNN

clear all;
DatasetPath = fullfile(['/Users/demac/我的文件/SYSU/' ...
    '4. 2022第二学期/图像处理实验/实验一/图像实验一/number_recognize/train_dataset/']);
imds = imageDatastore(DatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
每个类别有1000张图片,取700张进行train,300张进行test
train_size = 700;
[imdsTrain,imdsValidation] = splitEachLabel(imds,train_size,'randomized');
% 定义神经网络的forward
inplane = [28,28,1]; % 图像输入大小
numClasses = 10; %10分类任务
layers = [
    imageInputLayer(inplane)
    convolution2dLayer(5,20) % 卷积层
    batchNormalizationLayer % 归一层
    reluLayer % 激活函数
    fullyConnectedLayer(numClasses) % 全链接层
    softmaxLayer
    classificationLayer];
% train
options = trainingOptions("sgdm", ...
    "MaxEpochs",5, ...
    "ValidationData",imdsValidation, ...
    "ValidationFrequency",30, ...
    "Verbose",false, ...
    "Plots",'training-progress'); % 最后输出训练过程的趋势
net = trainNetwork(imdsTrain,layers,options); % 构建网络
% test
Pred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
acc = mean(Pred == YValidation);
disp("acc: " + num2str(acc));

实验结果

差值法

差值法分类最后的acc为:0.1676

2dCNN法

2dCNN法最后得到的acc为:0.98267

训练收敛过程如下图所示:

总结

通过两个处理方法的实验,我们发现,差值法并不能很好的完成minist数据集的10分类任务。与此同时,卷积神经网络是一种很好的分类方法,对于98.27%的准确率,我们还可以通过调整网络前向传播,如增加注意力机制等模块等方式继续提高分类的准确度。

附件

main.mlx 差值法分类任务代码源文件

main2.mlx 卷积神经网络分类任务代码源文件

main.pdf和main2.pdf 实时脚本输出pdf文件

label.py 打标签Python源文件

final.jpg 神经网络模型结构图

train.png 神经网络训练过程图

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/34706.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

被吐槽 GitHub仓 库太大,直接 600M 瘦身到 6M,这下舒服了

前言 忙里偷闲学习了点技术写了点demo代码&#xff0c;打算提交到我那 2000Star 的Github仓库上&#xff0c;居然发现有5个Issues&#xff0c;最近的一条日期已经是2022/8/1了&#xff0c;以前我还真没留意过这些&#xff0c;我这人懒得很&#xff0c;本地代码提交成功基本就不…

Python dict keys方法:获取字典中键的序列【将keys转为list】

描述 dict.keys()方法是Python的字典方法&#xff0c;它将字典中的所有键组成一个可迭代序列并返回。 使用示例 >>> list({Chinasoft:China, Microsoft:USA}.keys()) [Chinasoft, Microsoft] >>> test_dict {Chinasoft:China, Microsoft:USA, Sony:Japan,…

【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(7 月 4 日论文合集)

文章目录 一、检测相关(15篇)1.1 Artifacts Mapping: Multi-Modal Semantic Mapping for Object Detection and 3D Localization1.2 Shi-NeSS: Detecting Good and Stable Keypoints with a Neural Stability Score1.3 HODINet: High-Order Discrepant Interaction Network for…

机器学习一:线性回归

1 知识预警 1.1 线性代数 ( A T ) T A (A^\mathrm{T})^\mathrm{T}A (AT)TA$ ( A B ) T A T B T (AB)^\mathrm{T}A^\mathrm{T}B^\mathrm{T} (AB)TATBT ( λ A ) T λ A T (\lambda A)^\mathrm{T}\lambda A^\mathrm{T} (λA)TλAT ( A B ) T B T A T (AB)^\mathrm{T}B^…

【算法与数据结构】28、LeetCode实现strStr函数

文章目录 一、题目二、暴力穷解法三、KMP算法四、Sunday算法五、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、暴力穷解法 思路分析&#xff1a;首先判断字符串是否合法&#xff0c;然后利用for循环&#xff…

2023年全国节能宣传“节能低碳,你我同行”主题有奖竞答

2023年的7月10日至16日是第33个全国节能宣传周&#xff0c;主题是“节能降碳&#xff0c;你我同行”。 为践行低碳生活&#xff0c;切实做到节能降碳&#xff0c;各大企事业单位纷纷举办“节能低碳&#xff0c;你我同行”主题2023年全国节能宣传有奖竞答。 有奖知识竞答活动方…

Prometheus实现自定义指标监控

1、Prometheus实现自定义指标监控 前面我们已经通过 PrometheusGrafana 实现了监控&#xff0c;可以在 Grafana 上看到对应的 SpringBoot 应用信息了&#xff0c; 通过这些信息我们可以对 SpringBoot 应用有更全面的监控。 但是如果我们需要对一些业务指标做监控&#xff0c;…

【AI实战】从零开始搭建中文 LLaMA-33B 语言模型 Chinese-LLaMA-Alpaca-33B

【AI实战】从零开始搭建中文 LLaMA-33B 语言模型 Chinese-LLaMA-Alpaca-33B 简介环境配置环境搭建依赖安装 代码及模型权重拉取拉取 Chinese-LLaMA-Alpaca拉取 llama-30b-hf 模型权重及代码拉取 chinese-llama-lora-33b 模型权重及代码 合并模型权重先转换 pth 类型的模型权重&…

只出现一次的数字

题目链接 只出现一次的数字 题目描述 注意点 1 < nums.length < 30000-30000 < nums[i] < 30000除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次 解答思路 最初想到使用一种数据结构将元素存储起来&#xff0c;但是空间复杂度为O(n)&#xff0…

【花雕】全国青少年机器人技术一级考试备考实操搭建手册6

随着科技的不断进步&#xff0c;机器人技术已经成为了一个重要的领域。在这个领域中&#xff0c;机械结构是机器人设计中至关重要的一部分&#xff0c;它决定了机器人的形态、运动方式和工作效率。对于青少年机器人爱好者来说&#xff0c;了解机械结构的基础知识&#xff0c;掌…

大语言模型的百家齐放

基础语言模型 概念 基础语言模型是指只在大规模文本语料中进行了预训练的模型&#xff0c;未经过指令和下游任务微调、以及人类反馈等任何对齐优化。 如何理解 只包含纯粹的语言表示能力,没有指导性或特定目标。 只在大量无标注文本上进行无监督预训练,用于学习语言表示。 …

git 新建分支,切换分支,上传到远程分支

git 在使用的过程中&#xff0c;有的时候我们需要更换一个分支才存贮数据&#xff0c;作为版本的一个迭代或者是阶段性成果的一个里程碑。 如何来做操作呢&#xff1f; 在git中&#xff0c;可利用checkout命令转换分支&#xff0c;该命令的作用就是切换分支或恢复工作树文件&a…

【微信小程序开发】第 9 课 - 小程序的协同工作和发布

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、协同工作 1.1、了解权限管理需求 1.2、了解项目成员的组织结构 1.3、小程序的开发流程 2、小程序成员管理 2.1、成员管…

Nftables栈溢出漏洞(CVE-2022-1015)复现

背景介绍 Nftables Nftables 是一个基于内核的包过滤框架&#xff0c;用于 Linux 操作系统中的网络安全和防火墙功能。nftables 的设计目标是提供一种更简单、更灵活和更高效的方式来管理网络数据包的流量。 钩子点&#xff08;Hook Point&#xff09; 钩子点的作用是拦截数…

DMDSC共享存储集群启动、关闭及介绍

DMDSC介绍 DM 共享存储数据库集群&#xff08;DMDSC&#xff09;。DM共享存储数据库集群&#xff0c;允许多个数据库实例同时访问、操作同一数据库&#xff0c;具有高可用、高性能、负载均衡等特性。DMDSC 支持故障自动切换和故障自动重加入&#xff0c;某一个数据库实例故障后…

使用GeoPandas进行地理空间数据可视化

大家好&#xff0c;在当今数据驱动的世界中&#xff0c;将信息可视化到地图上可以提供有价值的见解&#xff0c;帮助有效地传达复杂的模式。GeoPandas是一个建立在pandas和shapely之上的Python库&#xff0c;使用户能够通过将地理空间数据与各种变量合并来创建令人惊叹的地图。…

深度学习(23)——YOLO系列(2)

深度学习&#xff08;23&#xff09;——YOLO系列&#xff08;2&#xff09; 文章目录 深度学习&#xff08;23&#xff09;——YOLO系列&#xff08;2&#xff09;1. model2. dataset3. utils4. test/detect5. detect全过程 今天先写YOLO v3的代码&#xff0c;后面再出v5&…

C语言:猜凶手

题目&#xff1a; 日本某地发生了一件谋杀案&#xff0c;警察通过排查确定杀人凶手必为4个嫌疑犯的一个。 以下为4个嫌疑犯的供词: A说&#xff1a;不是我。 B说&#xff1a;是C。 C说&#xff1a;是D。 D说&#xff1a;C在胡说 已知3个人说了真话&#xff0c;1个人说的是假话。…

2023,中国电商重回元老时代

中国的历史上不缺“太上皇”&#xff0c;但“太上皇”再度站到台前的很少。公元1457年&#xff0c;被囚禁在南宫的“太上皇”朱祁镇复位&#xff0c;上演了中国历史上少见的南宫复辟。而危机时刻被推举为皇帝的朱祁钰&#xff0c;后来的庙号是代宗&#xff0c;阴阳怪气十足。 …

Spark Sql 4/5

4. 用户自定义函数 通过spark.udf功能用户可以自定义函数。 4.1用户自定义UDF函数 Shellscala> val df spark.read.json("examples/src/main/resources/people.json")df: org.apache.spark.sql.DataFrame [age: bigint, name: string]​scala> df.show()--…