Java-NIO篇章(5)——Reactor反应器模式

前面已经讲过了Java-NIO中的三大核心组件Selector、Channel、Buffer,现在组件我们回了,但是如何实现一个超级高并发的socket网络通信程序呢?假设,我们只有一台内存为32G的Intel-i710八核的机器,如何实现同时2万个客户端高并发非阻塞通信?可能你会说不可能实现,答案是2万的并发可能都低估了,Redis单机通信20万的并发都是可以的,当然达到20万的并发对机器性能以及带宽都需要非常高的要求。那么就不得不引出今天讲解的Reactor反应器模式,它可以说是一种高并发网络编程中的设计模式,不包括在我们常说的23中设计模式之中。Netty网络框架、Nginx服务器、Reids缓存等大名鼎鼎的中间件都是基于Reactor反应器模式设计的,它就能提供超高并发的网络通信,我学过之后一直感叹这些大佬都是奇才,学这些思想精彩万分!下面具体进行介绍:

Reactor是什么?

Reactor就是一种网络编程的设计模式,如果不知道Reactor那么学Netty的时候会非常困难,因为很多概念就是Reactor,因此学会了Reactor在学Netty就非常简单。其次,懂得高并发中间件的网络通信设计的底层原理对提升自己的技术也是非常重要的,所以,学习像Netty这样的“精品中的精品”框架,肯定也是需要先从设计模式入手的。而Netty的整体架构,就是基于这个著名反应器模式。所以,学习和掌握反应器模式,对于开始学习高并发通信(包括Netty框架)的人来说,一定是磨刀不误砍柴工,况且很多中间件都是基于Netty来设计网络通信模块的。

思维风暴开启Reactor之路

好的,我们用一个例子开始讲解Reactor原理,假设你是Doug Lea,Java JUC包的作者, 也是Reactor设计模式的提出者之一。现在面临的一个问题就是现在的软件系统不能够满足日益增长的并发量,很多软件系统一旦人访问数多了要么卡死要么阻塞一段时间才有响应,用户体验非常差,现在公司提出了这个需求需要你解决。请你思考:

单线程阻塞模式

首先TCP网络通信需要先建立连接(三次握手)然后才可以传输数据,于是你写下了第一行解决的代码:

1 while(true){
2     socket = accept(); //阻塞,接收连接
3     handle(socket) ; //读取数据、业务处理、写入结果
4 }

5 private void handle(socket){
6     String msg = socket.read();  //阻塞,读取客户端发送过来的数据
7     System.out.println(msg);
8	  .... // 其他处理
9 }

解释一下,上面采用一个循环的方式来解决这个问题,程序占用一个主线程不断执行while循环中的代码,当代码执行到第2行时如果没有客户端发生连接的请求则阻塞,不继续向下执行。直到某个客户端发生连接请求,于是获得了socket对象,这个对象假设包括客户端的ip地址和端口号,并且可以通过socket与客户端接受和发送数据。之后执行到第6行代码,这里也会阻塞直到用户发生了数据。上面的服务器代码如果只有一个客户端与它交互是没有问题的,如果超过一个用户与之交互则会发生阻塞的情况,假设有两个客户A和B,A已经连接好了服务器也就是上面代码执行到了第6行代码进行阻塞,此时服务器希望收到客户发送的数据。就在阻塞的这个时候,如果B想要连接服务器,发送了连接请求,但是服务器代码一直卡在第6行等待获取客户端的发生数据,如果A一直不发送数据则B永远连不上服务器。除非等到A发送了一个数据,于是程序运行到第2行,然后接受B的连接请求,然后又卡在了第6行。很明显,上面的网络编程服务程序很糟糕,非常卡,连得上连不上完全看运气。失败!

这个时候,Doug Lea进行思考,阻塞是因为网络编程就是基于事件触发的,也就是说接受连接的第二行代码和读取数据的第六行代码完全取决于客户端,什么时候触发完全随机,因此很难搞。另外一个最主要的原因是这个是单线程程序,那么使用多线程能不能解决呢?答案是基本上可以解决,而且早期的Tomcat服务器就是这样设计的,这个模式就叫做 Connection Per Thread模式。下面进行详细介绍!

多线程经典Connection Per Thread模式

Connection Per Thread 即一个连接创建一个线程来处理,首先我们分析一下一台上述的内存32G的机器可以创建多少个线程,Java虚拟机默认一个线程占用1MB的栈内存,在不考虑其他情况下,假设分配给了虚拟机栈20G的空间,那么可以创建20*1024个线程来应对网络连接,也就是可以同时并发20480个客户端的请求。我们先看如何实现,再看它的缺点是什么,实现代码如下:

public class ConnectionPerThread implements Runnable {
    @Override
    public void run(){
        Socket socket = new Socket();
        while(true){
            acceptedSocket = socket.accept(); //依旧是阻塞方法,接受客户端的连接请求
            // 如果有一个连接就立即创建一个线程为这个连接服务,直到连接断开
            Handler handler = new Handler(socket);
            new Thread(handler).start(); // 启动新线程执行run方法
        }
    }

    class Handler implements Runnable{
        Socket socket;
        public Handler(Socket socket){
            this.socket = socket;
        }
        @Override
        public void run() {
            while (true){
                String msg = socket.read(); //依旧是阻塞方法,接受客户端的发送的数据
                if("close".equals(msg)){ // 假设客户端主动断开发送`close`字符,NIO中是空字符串表示断开
                    break; // 终止线程
                }
                // 也可以执行写操作,如果是发送大数据会明显阻塞,如果小文件可视为非阻塞,本质还是会阻塞
                socket.write("hello 用户!");
            }
        }
    }
}

以上的Socket使用的是伪代码,实际上需要使用OIO或者NIO的ServerSocket对象,反正能够表达这个意思就行。其实上面的代码还可以使用线程池来维护线程进行优化,但是这里只是为了举例说明多线程也是可以的实现较高并发的网络通信。下面来具体分析:

以上示例代码中,对于每一个新的网络连接都分配给一个线程。每个线程都独自处理自己负责的socket连接的输入和输出。当然,服务器的监听线程也是独立的,任何的socket连接的输入和输出处理,不会阻塞到后面新socket连接的监听和建立,这样,服务器的吞吐量就得到了提升。早期版本的Tomcat服务器,就是这样实现的。Connection Per Thread模式(一个线程处理一个连接)的优点是:解决了前面的新连接被严重阻塞的问题,在一定程度上,较大的提高了服务器的吞吐量。Connection Per Thread模式的缺点是:对应于大量的连接,需要耗费大量的线程资源,对线程资源要求太高。在系统中,线程是比较昂贵的系统资源。如果线程的数量太多,系统无法承受。而且,线程的反复创建、销毁、线程的切换也需要代价。因此,在高并发的应用场景下,多线程OIO的缺陷是致命的。新的问题来了:如何减少线程数量,比如说让一个线程同时负责处理多个socket连接的输入和输出,行不行呢? 可以的,一个有效途径是:使用Reactor反应器模式。用反应器模式对线程的数量进行控制,做到一个线程处理大量的连接。它是如何做到呢?直接上正餐——多线程的Reactor反应器模式。

多线程Reactor反应器模式

唤醒你的回忆,还记得Selector和IO多路复用不?不记得的话请访问:https://blog.csdn.net/cj151525/article/details/135695467 查看!我们前面讲到,客户端的连接和发送数据等行为是以IO事件的方式触发Selector的查询的,仅仅使用一个线程的Selector模式,就可以应付大量的访问,其主旨就是:如果某个用户阻塞了那本线程就去为别的需要服务的用户服务,而不是傻傻等待你阻塞解除,总而言之就是线程只为通过Selector.select()查询出来的需要执行的事件服务。因此,单线程下效率就非常高,例如Redis的数据处理模块就是单线程的,单线程的优点就是线程安全,CPU不需要频繁上下文切换。这种模式下,并发量上10万都是简简单单的。那么你敢想想如果我们引进多线程将会有多高的并发量吗?线程并不是越多越好,当你的线程数量和你的CPU核心数相同时就不会频繁发生CPU上下文切换,当线程数远远超过CPU核心数才会频繁发生导致执行效率不高,甚至阻塞等问题。好的,目前基础已经讲解完毕,下面正式引入Reactor反应器模式。

引用一下Doug Lea大师在文章《Scalable IO in Java》中对反应器模式的定义,具体如下:Reactor反应器模式由Reactor反应器线程、 Handlers处理器两大角色组成,两大角色的职责分别如下:

(1) Reactor反应器线程的职责:负责响应IO事件,并且分发到Handlers处理器。

(2) Handlers处理器的职责:非阻塞的执行业务处理逻辑。

每一个单独线程执行的Selector我们就叫做Reactor反应器。一个Reactor反应器包括一个Selector对象,另外还有需要干的活儿,也就是run方法中需要执行的逻辑,这个逻辑叫做Handler处理器。因此,如何理解Reactor反应器,就是单独线程来执行的Selector。明白了这些之后,那么我们将Selector分为Boss和Worker,Boss只有一位负责用户的连接请求与任务分发,Worker可以有很多,负责发送和接受用户的数据以及处理这些数据的中间过程。Boss和每个Worker就是一个Reactor,多线程Reactor反应器模式的模型如下(黄色的是方法,橙色是对象):

在这里插入图片描述

下面是代码实现,注意为了和Netty中EventLoop概念一致,这里Reactor使用EventLoop替代,你只要知道这两的概念是同一个,就是单独线程执行的Selector。代码如下:

package com.cheney.nioBaseTest;
import lombok.extern.slf4j.Slf4j;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * @version 1.0
 * @Author Chenjie
 * @Date 2024-01-21 18:39
 * @注释
 */
public class ReactorTest {
    public static void main(String[] args) throws IOException {
        new BossEventLoop().register();
    }

    /**
     * BossReactor,EventLoop和Reactor是同一个概念
     */
    @Slf4j
    static class BossEventLoop implements Runnable {
        private Selector bossSelector;
        private WorkerEventLoop[] workers; // 一个boss负责分配任务,worker负责执行任务
        private volatile boolean start = false; // 对象的方法只能执行一次
        AtomicInteger index = new AtomicInteger(); // WorkerEventLoop[]数组的下标

        public void register() throws IOException {
            if (!start) {
                // 连接Channel
                ServerSocketChannel ssc = ServerSocketChannel.open();
                ssc.bind(new InetSocketAddress(8080));
                ssc.configureBlocking(false);
                bossSelector = Selector.open();
                // Boss 注册连接事件
                SelectionKey ssckey = ssc.register(bossSelector, 0, null);
                ssckey.interestOps(SelectionKey.OP_ACCEPT);
                // 创建若干个WorkerReactor来读取发送数据
                workers = initEventLoops();
                // 本Boss一个线程启动起来先
                new Thread(this, "boss").start();
                log.debug("boss start...");
                start = true;
            }
        }

        /**
         * 创建若干个WorkerEventLoop
         * @return
         */
        public WorkerEventLoop[] initEventLoops() {
//        EventLoop[] eventLoops = new EventLoop[Runtime.getRuntime().availableProcessors()];
            WorkerEventLoop[] workerEventLoops = new WorkerEventLoop[2];
            for (int i = 0; i < workerEventLoops.length; i++) {
                workerEventLoops[i] = new WorkerEventLoop(i);
            }
            return workerEventLoops;
        }

        /**
         * Boss需要执行连接和任务分发,就是概念中的Handler处理器,图中的AcceptorHandler
         */
        @Override
        public void run() {
            while (true) {
                try {
                    bossSelector.select();
                    Iterator<SelectionKey> iter = bossSelector.selectedKeys().iterator();
                    while (iter.hasNext()) {
                        SelectionKey key = iter.next();
                        iter.remove();
                        if (key.isAcceptable()) {
                            // 前面只注册了连接事件,因此只要负责建立连接并将后续的任务分发给Worker就行
                            ServerSocketChannel c = (ServerSocketChannel) key.channel();
                            SocketChannel sc = c.accept();// 建立连接
                            sc.configureBlocking(false);
                            log.debug("{} connected", sc.getRemoteAddress());
                            // 分发给Worker来处理,这里是公平地轮询,即每个Worker公平循环领取任务去执行
                            // 因为每个Worker其实就是一个Selector,而每个Selector可以管理多个Channel(用户交互)
                            workers[index.getAndIncrement() % workers.length].register(sc);
                        }
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    /**
     * WorkerReactor,主要负责读取用户发来的数据
     */

    @Slf4j
    static class WorkerEventLoop implements Runnable {
        private Selector workerSelector;
        private volatile boolean start = false;
        private int index;

        // 任务队列,存放可执行的命令,两个线程需要传参的话通过队列来实现执行逻辑解耦
        private final ConcurrentLinkedQueue<Runnable> tasks = new ConcurrentLinkedQueue<>();

        public WorkerEventLoop(int index) {
            this.index = index;
        }

        public void register(SocketChannel sc) throws IOException {
            if (!start) {
                workerSelector = Selector.open();
                // 启动一个新线程执行本类的run方法
                new Thread(this, "worker-" + index).start();
                start = true;
            }
            tasks.add(() -> {
                // 向任务队列中添加任务(即需要执行的指令)
                try {
                    SelectionKey sckey = sc.register(workerSelector, 0, null);
                    sckey.interestOps(SelectionKey.OP_READ);
                    workerSelector.selectNow();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            });
            // 唤醒Selector
            workerSelector.wakeup();
        }

        /**
         * WorkerReactor 的Handler处理器,负责读取用户发过来的数据
         */
        @Override
        public void run() {
            while (true) {
                try {
                    workerSelector.select();
                    // 从任务队列中获取一个任务并执行
                    Runnable task = tasks.poll();
                    if (task != null) {
                        task.run();
                    }
                    Set<SelectionKey> keys = workerSelector.selectedKeys();
                    Iterator<SelectionKey> iter = keys.iterator();
                    while (iter.hasNext()) {
                        SelectionKey key = iter.next();
                        if (key.isReadable()) {
                            // 读取客户端发生过来的数据
                            SocketChannel sc = (SocketChannel) key.channel();
                            ByteBuffer buffer = ByteBuffer.allocate(128);
                            try {
                                int read = sc.read(buffer);
                                if (read == -1) { // 如果-1则是用户断开连接触发的读事件
                                    key.cancel();
                                    sc.close();
                                } else {
                                    buffer.flip();
                                    log.debug("{} message:", sc.getRemoteAddress());
                                }
                            } catch (IOException e) {
                                e.printStackTrace();
                                key.cancel();
                                sc.close();
                            }
                        }
                        iter.remove();
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }
}

总结

什么是Reactor?答:一个线程对应一个Selector模式的对象,Reactor模式其中BossReactor负责客户端连接与任务分发给WorkerReactor对象,WorkerReactor负责具体的数据发送与接受等操作。而各自所负责的任务也被叫做Handler(处理器)。相信看完上面的讲解和代码,你已经知道了什么是Reactor模式了!

Reactor反应器模式和优点和缺点

反应器模式和生产者消费者模式有点相似,不过反应器模式没有生产者,而是通过Selector查询已经发生的事件从而委派给Worker进行消费,可以认为是只有消费者的一种模式。反应器模式和观察者模式也有点相似,不同的是观察者模式一旦发布者状态变化时,其他的所有观察者都会收到通知从而执行相应的处理。而反应器模式是一旦Selector查询到了IO事件时只会指定某个Worker进行处理而不是所有的Worker。

优点
  • 响应快,虽然同一反应器线程本身是同步的,但不会被单个连接的IO操作所阻塞;
  • 编程相对简单,最大程度避免了复杂的多线程同步,也避免了多线程的各个进程之间切换的开销;
  • 可扩展,可以方便地通过增加反应器线程的个数来充分利用CPU资源。
缺点
  • 反应器模式增加了一定的复杂性,因而有一定的门槛,并且不易于调试。
  • 反应器模式依赖于操作系统底层的IO多路复用系统调用的支持,如Linux中的epoll系统调用。如果操作系统的底层不支持IO多路复用,反应器模式不会有那么高效。
  • 同一个Handler业务线程中,如果出现一个长时间的数据读写,会影响这个反应器中其他通道的IO处理。例如在大文件传输时, IO操作就会影响其他客户端(Client)的响应时间。因而对于这种操作,还需要进一步对反应器模式进行改进。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/346641.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云原生】Docker的端口映射、数据卷、数据卷容器、容器互联

目录 一、端口映射&#xff08;相当于添加iptables的DANT&#xff09; 二、数据卷创建&#xff08;宿主机目录或文件挂载到容器中&#xff09; 三、数据卷容器&#xff08;多个容器通过同一个数据卷容器为基点&#xff0c;实现所有容器数据共享&#xff09; 四、容器互联&am…

Docker容器引擎(2)

目录 一.批量删除镜像&#xff0c;容器 二.Docker 网络实现原理 随机映射端口&#xff08;从32768开始&#xff09; 访问自己&#xff1a; 在10服务器上配置路由转发&#xff1a; 指定映射端口&#xff1a; 查看容器的输出和日志信息&#xff1a; 将宿主机目标|文件挂载…

司铭宇老师:员工心态培训:正确对待工作的七种心态:让你在工作中游刃有余

员工心态培训&#xff1a;正确对待工作的七种心态&#xff1a;让你在工作中游刃有余 工作&#xff0c;是我们生活的核心组成部分。它不仅关乎我们的物质生活&#xff0c;更影响着我们的精神世界。如何在工作中找到平衡&#xff0c;实现自我价值&#xff0c;成为许多人心中的困…

oracle19.22的patch已发布

2024年01月16日,oracle发布了19.22的patch 具体patch如下 Reserved for Database - Do not edit or delete (Doc ID 19202401.9) 文档ID规则如下 19(版本)+年份(202x)+(季度首月01,04,07,10).9 往期patch no信息和下载参考文档 oracle 19C Release Update patch num…

Allegro因为精度问题导致走线未连接上的解决办法

Allegro因为精度问题导致走线未连接上的解决办法。还有在用Allegro进行PCB设计时,因为不小心操作移动了芯片,导致导线和引脚未连接上,也可以使用这个方法。 选择菜单Tools→Derive Connectivity(获取连接) 跳出下面的对话框, Convert Line to Connect Lines

SQL注入实战:宽字节注入

一、宽字节概率 1、单字节字符集:所有的字符都使用一个字节来表示&#xff0c;比如 ASCII编码(0-127) 2、多字节字符集:在多字节字符集中&#xff0c;一部分字符用多个字节来表示&#xff0c;另一部分字符(可能没有)用 单个字节来表示。 3、宽字节注入是利用mysql的一个特性…

人工智能在教学领域中有哪些运用?

人工智能在教学领域中可以有以下几种运用&#xff1a; 1. 智能辅助教学&#xff1a;利用人工智能技术开发出智能辅助教学系统&#xff0c;根据学生的学习状态和知识背景&#xff0c;提供个性化的学习路径和推荐的学习资源&#xff0c;帮助学生更好地掌握知识。 2. 自适应评估…

如何使用宝塔面板配置Nginx反向代理WebSocket(wss)

本章教程&#xff0c;主要介绍一下在宝塔面板中如何配置websocket wss的具体过程。 目录 一、添加站点 二、申请证书 三、配置代理 1、增加配置内容 2、代理配置内容 三、注意事项 一、添加站点 二、申请证书 三、配置代理 1、增加配置内容 map $http_upgrade $connection_…

Biotin-PEG4-TSA,生物素-PEG4-酪胺,用于标记蛋白质、核酸等生物分子

您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;Biotin-PEG4-Tyramide&#xff0c;Biotin-PEG4-TSA&#xff0c;生物素-PEG4-酪胺&#xff0c;Biotin PEG4 Tyramide&#xff0c;Biotin PEG4 TSA 一、基本信息 产品简介&#xff1a;Biotin PEG4 Tyramide is compos…

【力扣每日一题】力扣2859计算k位置下标对应元素的和(bitCount源码分析及实现)

题目来源 力扣2859计算k位置下标对应元素的和 题目概述 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。 请你用整数形式返回 nums 中的特定元素之 和 &#xff0c;这些特定元素满足&#xff1a;其对应下标的二进制表示中恰存在 k 个置位。 整数的二进制表示中的 1…

老子云-三维模型优化

轻量化服务 减面模式 适用于家装、游戏、电商产品等需要保留部件且精细结构多的模型 保留原始模型网格对象、UV和动画&#xff0c;仅使模型网格更轻量&#xff0c;新增GPU减面模式(限时体验)&#xff0c;省时更精细 合并模式 不保留原始模型网格和动画&#xff0c;适用于数…

【linux】远程桌面连接到Debian

远程桌面连接到Debian系统&#xff0c;可以使用以下几种工具&#xff1a; 1. VNC (Virtual Network Computing) VNC&#xff08;Virtual Network Computing&#xff09;是一种流行的远程桌面解决方案&#xff0c;它使用RFB&#xff08;Remote Framebuffer Protocol&#xff0…

系统引导程序 Boot Loader——学习笔记

基于嵌入式Linux 的完整系统软件由三个部分组成&#xff1a;系统引导程序、Linux 操作系统内核和文件系统。 系统引导程序 Boot Loader 是系统加电后运行的第一段软件代码&#xff0c;它的作用是加载操作系统或者其他程序到内存中&#xff0c;并将控制权交给它们。 Boot Load…

nodejs学习计划--(六)包管理工具

包管理工具 1. 介绍 包是什么 『包』英文单词是 package &#xff0c;代表了一组特定功能的源码集合包管理工具 管理『包』的应用软件&#xff0c;可以对「包」进行 下载安装 &#xff0c; 更新 &#xff0c; 删除 &#xff0c; 上传 等操作 借助包管理工具&#xff0c;可以快…

无人机航迹规划(五):七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)

一、七种算法&#xff08;DBO、LO、SWO、COA、LSO、KOA、GRO&#xff09;简介 1、蜣螂优化算法DBO 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…

SpringMVC第四天(SSM整合)

SSM整合流程 1.创建工程 2.SSM整合 ①Spring SpringConfig package com.cacb.config;import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.Import;…

解析半导体放电管TSS的原理与应用?|深圳比创达电子

随着电子技术的迅速发展&#xff0c;半导体放电管&#xff08;TSS&#xff09;已成为电路保护的重要组件。本文旨在全面深入解析半导体放电管TSS的原理与应用&#xff0c;帮助读者更好地理解这一关键元件。 一、半导体放电管TSS的概念与原理 半导体放电管TSS是一种用于保护电…

sheng的学习笔记-神经网络

基础知识 基础知识-什么是分类问题 分类问题是根据已有数据&#xff0c;判断结果是正的还是负的&#xff08;1或者0&#xff09;,比如&#xff1a; • 根据肿瘤大小&#xff0c;判断肿瘤是良性的还是恶性的 • 根据客户交易行为&#xff0c;判断是否是恶意用户 • 根据邮件情况…

司铭宇老师:手机门店销售培训:手机销售的技巧和方法

手机门店销售培训&#xff1a;手机销售的技巧和方法 在当今这个信息化的时代&#xff0c;手机已经成为了我们生活中不可或缺的一部分。作为手机销售人员&#xff0c;如何在这个竞争激烈的市场中突出重围&#xff0c;实现销售目标&#xff0c;是每一位销售人员都需要思考的问题。…

Unity出AAB包资源加载过慢

1&#xff09;Unity出AAB包资源加载过慢 2&#xff09;Unity IL2CPP打包&#xff0c;libil2cpp.so库中没有Mono接口 3&#xff09;如何在URP中正确打出Shader变体 4&#xff09;XLua打包Lua文件粒度问题 这是第370篇UWA技术知识分享的推送&#xff0c;精选了UWA社区的热门话题&…