《动手学深度学习(PyTorch版)》笔记3.4

Chapter3 Linear Neural Networks

3.4 Softmax Regression

3.4.1 Classification Problems

一般的分类问题并不与类别之间的自然顺序有关,统计学家发明了一种表示分类数据的简单方法:独热编码(one-hot encoding)。独热编码是一个向量,它的分量和类别一样多。类别对应的分量设置为1,其他所有分量设置为0。在我们的例子中,标签 y y y将是一个三维向量,其中 ( 1 , 0 , 0 ) (1, 0, 0) (1,0,0)对应于“猫”、 ( 0 , 1 , 0 ) (0, 1, 0) (0,1,0)对应于“鸡”、 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)对应于“狗”:
y ∈ { ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) } . y \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}. y{(1,0,0),(0,1,0),(0,0,1)}.

3.4.2 Network Architecture

为了估计所有可能类别的条件概率,我们需要一个有多个输出的模型,每个类别对应一个输出。为了解决线性模型的分类问题,我们需要和输出一样多的仿射函数(affine function)。每个输出对应于它自己的仿射函数。在我们的例子中,由于我们有4个特征和3个可能的输出类别,我们将需要12个标量来表示权重(带下标的 w w w),3个标量来表示偏置(带下标的 b b b)。下面我们为每个输入计算三个未规范化的预测(logit): o 1 o_1 o1 o 2 o_2 o2 o 3 o_3 o3

o 1 = x 1 w 11 + x 2 w 12 + x 3 w 13 + x 4 w 14 + b 1 , o 2 = x 1 w 21 + x 2 w 22 + x 3 w 23 + x 4 w 24 + b 2 , o 3 = x 1 w 31 + x 2 w 32 + x 3 w 33 + x 4 w 34 + b 3 . \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \end{aligned} o1o2o3=x1w11+x2w12+x3w13+x4w14+b1,=x1w21+x2w22+x3w23+x4w24+b2,=x1w31+x2w32+x3w33+x4w34+b3.
上式通过向量形式表达为 o = W x + b \mathbf{o} = \mathbf{W} \mathbf{x} + \mathbf{b} o=Wx+b
我们可以用神经网络图来描述这个计算过程,如下图所示。与线性回归一样,softmax回归也是一个单层神经网络。由于计算每个输出 o 1 o_1 o1 o 2 o_2 o2 o 3 o_3 o3取决于所有输入 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4,所以softmax回归的输出层也是全连接层。

在这里插入图片描述

3.4.3 Parameterization Cost of Fully-Connected Layers(此段书上内容较少,有待详细补充)

在深度学习中,全连接层无处不在。然而,全连接层是“完全”连接的,可能有很多可学习的参数。具体来说,对于任何具有 d d d个输入和 q q q个输出的全连接层,参数开销(在传递函数或方法参数时引入的额外开销)为 O ( d q ) \mathcal{O}(dq) O(dq),这个数字在实践中可能高得令人望而却步。幸运的是,将 d d d个输入转换为 q q q个输出的成本可以减少到 O ( d q n ) \mathcal{O}(\frac{dq}{n}) O(ndq),其中超参数 n n n可以由我们灵活指定,以在实际应用中平衡参数节约和模型有效性。

3.4.4 Softmax Operation

现在我们将优化参数,以最大化预测结果符合实际情况的概率。为了得到预测结果,我们将设置一个阈值,如选择具有最大概率的标签。我们希望模型的输出 y ^ j \hat{y}_j y^j可以视为属于类 j j j的概率,然后选择具有最大输出值的类别 argmax ⁡ j y j \operatorname*{argmax}_j y_j argmaxjyj作为我们的预测。例如,如果 y ^ 1 \hat{y}_1 y^1 y ^ 2 \hat{y}_2 y^2 y ^ 3 \hat{y}_3 y^3分别为0.1、0.8和0.1,那么我们预测的类别是2,在我们的例子中代表“鸡”。但我们不能将未规范化的预测 o o o直接视作我们感兴趣的输出,因为将线性层的输出直接视为概率时存在一些问题:一方面,我们没有限制这些输出数字的总和为1;另一方面,根据输入的不同,它们可以为负值。

要将输出视为概率,我们必须保证在任何数据上的输出都是非负的且总和为1。此外,我们需要一个训练的目标函数,来激励模型精准地估计概率。例如,在分类器输出0.5的所有样本中,我们希望这些样本是刚好有一半实际上属于预测的类别。这个属性叫做校准(calibration)。

社会科学家邓肯·卢斯于1959年在选择模型(choice model)的理论基础上发明的softmax函数正是这样做的:softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。如下式:

y ^ = s o f t m a x ( o ) 其中 y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}} = \mathrm{softmax}(\mathbf{o})\quad \text{其中}\quad \hat{y}_j = \frac{\exp(o_j)}{\sum_k \exp(o_k)} y^=softmax(o)其中y^j=kexp(ok)exp(oj)

这里,对于所有的 j j j总有 0 ≤ y ^ j ≤ 1 0 \leq \hat{y}_j \leq 1 0y^j1。因此, y ^ \hat{\mathbf{y}} y^可以视为一个正确的概率分布。softmax运算不会改变未规范化的预测 o \mathbf{o} o之间的大小次序,只会确定分配给每个类别的概率。因此,在预测过程中,我们仍然可以用下式来选择最有可能的类别。

argmax ⁡ j y ^ j = argmax ⁡ j o j . \operatorname*{argmax}_j \hat y_j = \operatorname*{argmax}_j o_j. jargmaxy^j=jargmaxoj.

尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。因此,softmax回归是一个线性模型

3.4.5 Softmax Vectorization

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。假设我们读取了一个批量的样本 X \mathbf{X} X,其中特征维度(输入数量)为 d d d,批量大小为 n n n。此外,假设我们在输出中有 q q q个类别。那么小批量样本的特征为 X ∈ R n × d \mathbf{X} \in \mathbb{R}^{n \times d} XRn×d,权重为 W ∈ R d × q \mathbf{W} \in \mathbb{R}^{d \times q} WRd×q,偏置为 b ∈ R 1 × q \mathbf{b} \in \mathbb{R}^{1\times q} bR1×q。softmax回归的矢量计算表达式为:

O = X W + b , Y ^ = s o f t m a x ( O ) . \begin{aligned} \mathbf{O} &= \mathbf{X} \mathbf{W} + \mathbf{b}, \\ \hat{\mathbf{Y}} & = \mathrm{softmax}(\mathbf{O}). \end{aligned} OY^=XW+b,=softmax(O).

相对于一次处理一个样本,小批量样本的矢量化加快了 X 和 W \mathbf{X}和\mathbf{W} XW的矩阵-向量乘法。由于 X \mathbf{X} X中的每一行代表一个数据样本,那么softmax运算可以按行(rowwise)执行:对于 O \mathbf{O} O的每一行,我们先对所有项进行幂运算,然后通过求和对它们进行标准化。在上式中, X W + b \mathbf{X} \mathbf{W} + \mathbf{b} XW+b的求和会使用广播机制,小批量的未规范化预测 O \mathbf{O} O和输出概率 Y ^ \hat{\mathbf{Y}} Y^都是形状为 n × q n \times q n×q的矩阵。

3.4.6 Loss Function

接下来,我们将使用最大似然估计来度量预测的效果,这与在线性回归中的方法相同。

3.4.6.1 Log Likelihood

softmax函数给出了一个向量 y ^ \hat{\mathbf{y}} y^,我们可以将其视为“对给定任意输入 x \mathbf{x} x的每个类的条件概率”。例如, y ^ 1 \hat{y}_1 y^1= P ( y = 猫 ∣ x ) P(y=\text{猫} \mid \mathbf{x}) P(y=x)。假设整个数据集 { X , Y } \{\mathbf{X}, \mathbf{Y}\} {X,Y}具有 n n n个样本,其中索引 i i i的样本由特征向量 x ( i ) \mathbf{x}^{(i)} x(i)和独热标签向量 y ( i ) \mathbf{y}^{(i)} y(i)组成。我们可以将估计值与实际值进行比较:

P ( Y ∣ X ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ) . P(\mathbf{Y} \mid \mathbf{X}) = \prod_{i=1}^n P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}). P(YX)=i=1nP(y(i)x(i)).

根据最大似然估计,我们最大化 P ( Y ∣ X ) P(\mathbf{Y} \mid \mathbf{X}) P(YX),相当于最小化负对数似然:

− log ⁡ P ( Y ∣ X ) = ∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n l ( y ( i ) , y ^ ( i ) ) (对数似然损失等于交叉熵损失的总和,后续补充) -\log P(\mathbf{Y} \mid \mathbf{X}) = \sum_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)})\text{(对数似然损失等于交叉熵损失的总和,后续补充)} logP(YX)=i=1nlogP(y(i)x(i))=i=1nl(y(i),y^(i))(对数似然损失等于交叉熵损失的总和,后续补充)

其中,对于任何标签 y \mathbf{y} y和模型预测 y ^ \hat{\mathbf{y}} y^,损失函数为:

l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ y ^ j . l(\mathbf{y}, \hat{\mathbf{y}}) = - \sum_{j=1}^q y_j \log \hat{y}_j. l(y,y^)=j=1qyjlogy^j.

上式中的损失函数通常被称为交叉熵损失(cross-entropy loss)。由于 y \mathbf{y} y是一个长度为 q q q的独热编码向量,所以除了一个项以外的所有项 j j j都消失了。由于所有 y ^ j \hat{y}_j y^j都是预测的概率,所以它们的对数永远不会大于 0 0 0。因此,如果正确地预测实际标签,即如果实际标签 P ( y ∣ x ) = 1 P(\mathbf{y} \mid \mathbf{x})=1 P(yx)=1,则损失函数不能进一步最小化。注意,这往往是不可能的。例如,数据集中可能存在标签噪声(比如某些样本可能被误标),或输入特征没有足够的信息来完美地对每一个样本分类。
由对数似然损失等于交叉熵损失的总和(后续补充),有
∑ i = 1 n − log ⁡ P ( y ( i ) ∣ x ( i ) ) = ∑ i = 1 n l ( y ( i ) , y ^ ( i ) ) \sum_{i=1}^n -\log P(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}) = \sum_{i=1}^n l(\mathbf{y}^{(i)}, \hat{\mathbf{y}}^{(i)}) i=1nlogP(y(i)x(i))=i=1nl(y(i),y^(i))
现在让我们考虑整个结果分布的情况,即观察到的不仅仅是一个结果。对于标签 y \mathbf{y} y,我们可以使用与以前相同的表示形式。唯一的区别是,我们现在用一个概率向量表示,如 ( 0.1 , 0.2 , 0.7 ) (0.1, 0.2, 0.7) (0.1,0.2,0.7),而不是仅包含二元项的向量 ( 0 , 0 , 1 ) (0, 0, 1) (0,0,1)。我们使用交叉熵损失来定义所有标签分布的预期损失值,它是分类问题最常用的损失之一。

3.4.6.2 Softmax and Derivatives

由于softmax和相关的损失函数很常见,因此我们需要更好地理解它的计算方式。利用softmax的定义,我们得到:

l ( y , y ^ ) = − ∑ j = 1 q y j log ⁡ exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) = ∑ j = 1 q y j log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j = log ⁡ ∑ k = 1 q exp ⁡ ( o k ) − ∑ j = 1 q y j o j \begin{aligned} l(\mathbf{y}, \hat{\mathbf{y}}) &= - \sum_{j=1}^q y_j \log \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} \\ &= \sum_{j=1}^q y_j \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j\\ &= \log \sum_{k=1}^q \exp(o_k) - \sum_{j=1}^q y_j o_j \end{aligned} l(y,y^)=j=1qyjlogk=1qexp(ok)exp(oj)=j=1qyjlogk=1qexp(ok)j=1qyjoj=logk=1qexp(ok)j=1qyjoj
关于最后一行,由于 y \mathbf{y} y是一个长度为 q q q的独热编码向量,所以除了一个项以外的所有项 j j j都消失了。
考虑相对于任何未规范化的预测 o j o_j oj的导数,我们得到:

∂ o j l ( y , y ^ ) = exp ⁡ ( o j ) ∑ k = 1 q exp ⁡ ( o k ) − y j = s o f t m a x ( o ) j − y j . \partial_{o_j} l(\mathbf{y}, \hat{\mathbf{y}}) = \frac{\exp(o_j)}{\sum_{k=1}^q \exp(o_k)} - y_j = \mathrm{softmax}(\mathbf{o})_j - y_j. ojl(y,y^)=k=1qexp(ok)exp(oj)yj=softmax(o)jyj.

换句话说,导数是我们softmax模型分配的概率与实际发生的情况(由独热标签向量表示)之间的差异。从这个意义上讲,这与我们在回归中看到的非常相似,其中梯度是观测值 y y y和估计值 y ^ \hat{y} y^之间的差异。这不是巧合,在任何指数族分布模型中(参见本书附录中关于数学分布的一节),对数似然的梯度正是由此得出的。这使梯度计算在实践中变得容易很多。

3.4.7 Basics of Information Theory

信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。

3.4.7.1 Entropy

信息论的核心思想是量化数据中的信息内容,该数值被称为分布 P P P(entropy),可以通过以下方程得到:

H [ P ] = ∑ j − P ( j ) log ⁡ P ( j ) . H[P] = \sum_j - P(j) \log P(j). H[P]=jP(j)logP(j).

信息论的基本定理之一指出,为了对从分布 p p p中随机抽取的数据进行编码,我们至少需要 H [ P ] H[P] H[P]“纳特(nat)”对其进行编码。“纳特”相当于比特(bit),但是对数底为 e e e而不是2。因此,一个纳特是 1 log ⁡ ( 2 ) ≈ 1.44 \frac{1}{\log(2)} \approx 1.44 log(2)11.44比特。

3.4.7.2 Amount of Information

压缩与预测有什么关系呢?想象一下,我们有一个要压缩的数据流,如果我们很容易预测下一个数据,那么这个数据就很容易压缩。举一个极端的例子,假如数据流中的每个数据完全相同,那么为了传递数据流的内容,我们不必传输任何信息,也就是说,“下一个数据是xx”这个事件毫无信息量。

但是,如果我们不能完全预测每一个事件,那么我们有时可能会感到"惊异"。克劳德·香农决定用信息量 log ⁡ 1 P ( j ) = − log ⁡ P ( j ) \log \frac{1}{P(j)} = -\log P(j) logP(j)1=logP(j)来量化这种惊异程度。在观察一个事件 j j j时,并赋予它(主观)概率 P ( j ) P(j) P(j)。当我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。在前文中定义的熵,是当分配的概率真正匹配数据生成过程时的信息量的期望

3.4.7.3 Re-examining Cross-Entropy

交叉熵 P P P Q Q Q,记为 H ( P , Q ) H(P, Q) H(P,Q)
我们可以把交叉熵想象为“主观概率为 Q Q Q的观察者在看到根据概率 P P P生成的数据时的预期惊异”。当 P = Q P=Q P=Q时,交叉熵达到最低,此时从 P P P Q Q Q的交叉熵是 H ( P , P ) = H ( P ) H(P, P)= H(P) H(P,P)=H(P)

简而言之,我们可以从两方面来考虑交叉熵分类目标:

  1. 最大化观测数据的似然;
  2. 最小化传达标签所需的惊异。

3.4.8 Model Prediction and Evaluation

在训练softmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。通常我们使用预测概率最高的类别作为输出类别。如果预测与实际类别(标签)一致,则预测是正确的。我们将使用精度(accuracy)来评估模型的性能,精度等于正确预测数与预测总数之间的比率。

3.4.9 Conclusions

  • softmax运算获取一个向量并将其映射为概率。
  • softmax回归适用于分类问题,它使用了softmax运算中输出类别的概率分布。
  • 交叉熵是一个衡量两个概率分布之间差异的很好的度量,它测量给定模型编码数据所需的比特数。

3.4.10 References

  • 本书附录中关于信息论的一节

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/346586.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

docker里安装conda,并source本地已有的虚拟环境包

有的环境比较难配,在镜像里配置的版本总是与本地不同,导致程序起不来,今天就用个最基础的镜像,去配置anaconda,然后直接导入虚拟环境。 本次使用镜像:nvcr.io/nvidia/cuda:12.2.0-runtime-ubuntu20.04&…

Spring Boot 中的自动配置(autoconfigure)

文中部分图片来源为 动力节点-王鹤老师的Spring Boot3.0 视频讲解中。 Spring Boot 中的自动配置(autoconfigure) 一、自动配置的原理二、关键注解和类1.EnableAutoConfiguration 注解2.Import 注解3.AutoConfigurationImportSelector 类4.AutoConfigura…

JeecgBoot 3.6.1实现Modal对话框,以为审核数据为例

JeecgBoot 3.6.1实现Modal对话框 vue使用的是3.0版本 文章目录 JeecgBoot 3.6.1实现Modal对话框前言一、列表页面关键代码示例二、textAuditModal.vue代码示例三、test.api.ts总结 前言 在工作中,有一个需求,要求,在数据列表页,…

念念不忘智能编程,必有回响CodeArts Snap

开发者的碎碎念 之前在【我与ModelArts的故事】的文章里,分享过我学习新技术的经历,主要有: 自主学习,比如自学Python;借助华为云的产品边用边学。 在围着"编程学习"这座城池,外围来来回回转了…

AI部署开发指南:用vs2019编译OnnxRuntime-v1.16.2

前言 要详细了解一个系统的部署,对其源码进行调试可能是最好的办法。 Pytorch的部署几经改版,最大的特点依然是不稳定,或者使用libtorch这种稳定但优化力度不够的部署方案。 而稳定且通用的方案,目前仍然是export to onnx的办法…

HCIP:不同VLAN下实现网络互相通信

配置pc1 配置pc2 配置pc3 将sw1划分到vlan3 将sw3划分到vlan3 在sw1上进行缺省 将sw1上(g0/0/1)的untagged改成 1 3 则在pc1上ping pc2可通 在sw1上进行缺省 在sw3上(e0/0/1)打标记 则在pc1上ping pc3可通(实现互通&am…

python08-Python的数字类型之复数类型

复数是一个数学上的概念,这节不懂的可以绕过,实际场景很少用到 Python甚至可以支持复数,复数的虚部用j或者J来表示 如果需要对复数进行计算,可以导入Python的cmath模块(c代表complex),如下面的…

DC电源模块的未来发展趋势

BOSHIDA DC电源模块的未来发展趋势 未来DC电源模块的发展趋势可以预测如下: 1. 高效能:随着绿色能源的需求增长,DC电源模块将更加注重高效能的设计,以减少能源消耗,并提高整体系统的能源利用率。 2. 高稳定性&#…

对 MODNet 网络结构直接剪枝的探索

文章目录 1 写在前面2 遇到问题3 解决方案4 探索过程4.1 方案一4.2 方案二4.3 方案三 5 疑惑与思考5.1 Q15.2 Q2 1 写在前面 在前面的文章中,笔者与小伙伴们分享了对 MODNet 主干网络部分以及其余分支分别剪枝的探索历程,即先分解、再处理、后融合的手法…

【JSON2WEB】03 go的模板包html/template的使用

Go text/template 是 Go 语言标准库中的一个模板引擎,用于生成文本输出。它使用类似于 HTML 的模板语言,可以将数据和模板结合起来,生成最终的文本输出。 Go html/template包实现了数据驱动的模板,用于生成可防止代码注入的安全的…

基于node.js和Vue3的医院挂号就诊住院信息管理系统

摘要: 随着信息技术的快速发展,医院挂号就诊住院信息管理系统的构建变得尤为重要。该系统旨在提供一个高效、便捷的医疗服务平台,以改善患者就医体验和提高医院工作效率。本系统基于Node.js后端技术和Vue3前端框架进行开发,利用其…

“趣味夕阳,乐享生活”小组活动(第二节)

立冬以来,天气日渐寒冷,气温变化较大,各种传染病多发,为进一步增强老年人冬季预防传染病保健意识及科学合理健康的生活方式。近日,1月22日,南阳市人人社工灌涨站开展了“趣味夕阳,乐享生活”小组…

Maps基础知识

什么是Maps? 在JavaScript中,Map是一种用于存储键值对的数据结构。它类似于对象,但有一些区别。 Map对象允许任何类型的值作为键(包括对象、函数和基本数据类型),而对象只能使用字符串或符号作为键。这使得…

Python - SnowNLP 情感分析与自定义训练

目录 一.引言 二.SnowNLP 情感分析 1.安装 SnowNLP 2.测试 SnowNLP 三.SnowNLP 自定义训练 1.数据集准备 2.训练与保存 3.模型替换 4.模型测试 5.SnowNLP 原理 ◆ Bayes 公式 ◆ 先验概率 ◆ 后验概率 ◆ 情感模型 四.总结 一.引言 SnowNLP 是一个基于 Python …

Chrome 插件调试

http://blog.haoji.me/chrome-plugin-develop.html#te-bie-zhu-yi-background-de-bao-cuo 手把手:Chrome浏览器开发系列(四):调试我们开发的插件 - 掘金

5_机械臂运动学基础_矩阵

上次说的向量空间是为矩阵服务的。 1、学科回顾 从科技实践中来的数学问题无非分为两类:一类是线性问题,一类是非线性问题。线性问题是研究最久、理论最完善的;而非线性问题则可以在一定基础上转化为线性问题求解。 线性变换: 数域…

第12章_集合框架(Collection接口,Iterator接口,List,Set,Map,Collections工具类)

文章目录 第12章_集合框架本章专题与脉络1. 集合框架概述1.1 生活中的容器1.2 数组的特点与弊端1.3 Java集合框架体系1.4 集合的使用场景 2. Collection接口及方法2.1 添加2.2 判断2.3 删除2.4 其它 3. Iterator(迭代器)接口3.1 Iterator接口3.2 迭代器的执行原理3.3 foreach循…

基于 pytorch-openpose 实现 “多目标” 人体姿态估计

前言 还记得上次通过 MediaPipe 估计人体姿态关键点驱动 3D 角色模型,虽然节省了动作 K 帧时间,但是网上还有一种似乎更方便的方法。MagicAnimate 就是其一,说是只要提供一张人物图片和一段动作视频 (舞蹈武术等),就可以完成图片…

【模拟】力扣1576(Java)

题目 class Solution {public String modifyString(String ss){char[] s ss.toCharArray();int n s.length;for(int i0;i<n;i){if(s[i] ?){for(char cha;ch<z;ch){if((i 0 || ch!s[i-1])&&(i n-1 || ch! s[i1])){s[i] ch;break;}}}}return String.valu…

forEach()方法跳出循环

forEach方法如何跳出循环_foreach跳出循环-CSDN博客 forEach方法遍历数组&#xff0c;每次遍历都根据条件判断&#xff0c;当条件符合时&#xff0c;就跳出整个遍历&#xff0c;不再继续遍历后面的元素 forEach()方法跳出整个循环遍历 forEach方法一般用抛出异常的方式跳出整…