基于深度学习的高精度动物园动物检测识别系统(PyTorch+Pyside6+YOLOv5模型)

摘要:基于深度学习的高精度动物园动物(水牛、斑马、大象、水豚、海龟、猫、奶牛、鹿、狗、火烈鸟、长颈鹿、捷豹、袋鼠、狮子、鹦鹉、企鹅、犀牛、羊、老虎)检测识别系统可用于日常生活中或野外来检测与定位动物园动物,利用深度学习算法可实现图片、视频、摄像头等方式的动物园动物目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用Pysdie6库来搭建页面展示系统,同时支持ONNX、PT等模型作为权重模型的输出。本系统支持的功能包括动物园动物训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标列表、位置信息;前向推理用时。另外本动物园动物检测识别系统同时支持原始图像与检测结果图像的同时展示,原始视频与检测结果视频的同时展示。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv5是单阶段目标检测算法YOLO的第五代,根据实验得出结论,其在速度与准确性能方面都有了明显提升,开源的代码可见https://github.com/ultralytics/yolov5。因此本博文利用YOLOv5检测算法实现一种高精度动物园动物识别检测模型,再搭配上Pyside6库写出界面系统,完成目标检测识别页面的开发。注意到YOLO系列算法的最新进展已有YOLOv6、YOLOv7、YOLOv8等算法,将本系统中检测算法替换为最新算法的代码也将在后面发布,欢迎关注收藏。

环境搭建

(1)下载完整文件到自己电脑上,然后使用cmd打开到文件目录
(2)利用Conda创建环境(Anacodna),conda create -n yolo5 python=3.8 然后安装torch和torchvision(pip install torch1.10.0+cu113 torchvision0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.tuna.tsinghua.edu.cn/simple)其中-i https://pypi.tuna.tsinghua.edu.cn/simple代表使用清华源,这行命令要求nvidia-smi显示的CUDA版本>=11.3,最后安装剩余依赖包使用:pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述
在这里插入图片描述

(3)安装Pyside6库 pip install pyside6==6.3 -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)对于windows系统下的pycocotools库的安装:pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。希望大家可以喜欢,初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及。engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化信息的设置。
在这里插入图片描述
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图片进行检测与识别。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

视频选择、检测与导出

用户可以点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面的左上方显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面的左上方显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频或打开摄像按钮来上传图像、视频或打开摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv5,相比于YOLOv3和YOLOv4,YOLOv5在检测精度和速度上都有很大的提升。YOLOv5算法的核心思想是将目标检测问题转化为一个回归问题,通过直接预测物体中心点的坐标来代替Anchor框。此外,YOLOv5使用SPP(Spatial Pyramid Pooling)的特征提取方法,这种方法可以在不增加计算量的情况下,有效地提取多尺度特征,提高检测性能。YOLOv5s模型的整体结构如下图所示。

在这里插入图片描述

YOLOv5网络结构是由Input、Backbone、Neck、Prediction组成。YOLOv5的Input部分是网络的输入端,采用Mosaic数据增强方式,对输入数据随机裁剪,然后进行拼接。Backbone是YOLOv5提取特征的网络部分,特征提取能力直接影响整个网络性能。在特征提取阶段,YOLOv5使用CSPNet(Cross Stage Partial Network)结构,它将输入特征图分为两部分,一部分通过一系列卷积层进行处理,另一部分直接进行下采样,最后将这两部分特征图进行融合。这种设计使得网络具有更强的非线性表达能力,可以更好地处理目标检测任务中的复杂背景和多样化物体。在Neck阶段使用连续的卷积核C3结构块融合特征图。在Prediction阶段,模型使用结果特征图预测目标的中心坐标与尺寸信息。博主觉得YOLOv5不失为一种目标检测的高性能解决方案,能够以较高的准确率对目标进行分类与定位。当然现在YOLOv6、YOLOv7、YOLOv8等算法也在不断提出和改进,后续博主也会将这些算法融入到本系统中,敬请期待。

数据集介绍

本系统使用的动物园动物数据集手动标注了水牛、斑马、大象、水豚、海龟、猫、奶牛、鹿、狗、火烈鸟、长颈鹿、捷豹、袋鼠、狮子、鹦鹉、企鹅、犀牛、羊、老虎这19个类别,数据集总计45098张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的动物园动物检测识别数据集包含训练集36045张图片,验证集9053张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。、
在这里插入图片描述

关键代码解析

本系统的深度学习模型使用PyTorch实现,基于YOLOv5算法进行目标检测。在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。
在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv5算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、PyQt等。
在这里插入图片描述
在这里插入图片描述

Pyside6界面设计

Pyside6是Python语言的GUI编程解决方案之一,可以快速地为Python程序创建GUI应用。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的动物园动物数据集进行训练,使用了YOLOv5算法对数据集训练,总计训练了300个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv5模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv5模型对动物园动物数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述
在这里插入图片描述

综上,本博文训练得到的YOLOv5模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/34548.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法与数据结构】541、LeetCode反转字符串 II

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:本题自己写了一个swap函数,用来反转字符串,也可以用库函数reverse。然后是用in…

mac上使用brew安装mysql5.7

使用Homebrew进行MySQL数据库的安装需要MacOS系统中已经安装了相关环境 1.查询软件信息 首先使用search命令搜索MySQL数据库完整名称: brew search mysql可以看到5.7版本的MySQL数据库完整名称是mysql5.7 2. 执行安装命令 使用install命令进行软件安装&#xf…

基于单片机电子密码锁射频卡识别指纹门禁密码锁系统的设计与实现

功能介绍 通过指纹进行开锁或者是按键输入当前的密码,修改密码,对IC卡可以进行注册,删除。当有RFID卡进入到读卡器的读卡范围内时,则会自动读取卡序列号,单片机根据卡的序列号对卡进行判断。若该卡是有效卡&#xff0c…

Markdown 进阶语法:Mermaid 绘图 (一) - 流程图 (Flowchart)

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。 🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心&…

瑞吉外卖-Day02

title: 瑞吉外卖-Day02 abbrlink: ‘1’ date: 2023-04-1 19:30:00 瑞吉外卖-Day02 课程内容 完善登录功能新增员工员工信息分页查询启用/禁用员工账号编辑员工信息 分析前端页面效果是如何实现的 为什么点击左边 右边会根着变化 [外链图片转存失败,源站可能有防盗链机制…

Neo4J 特性CQL语句,函数,Springboot集成

Neo4J Neo4J Neo4J一、Neo4J相关介绍1.为什么需要图数据库方案1:Google方案2:Facebook 2.特性和优势3.什么是Neo4j4.Neo4j数据模型图论基础属性图模型Neo4j的构建元素 5.软件安装 二、CQL语句1.CQL简介2.CREATE 命令3.MATCH 命令4.RETURN 子句5.MATCH和R…

FastDFS【FastDFS环境搭建_Linux、FastDFS指令、复习】(二)-全面详解(学习总结---从入门到深化)

目录 FastDFS环境搭建_Linux FastDFS指令 复习: FastDFS环境搭建_Linux 下载安装gcc 安装方式为yum安装(需网络): yum install gcc-c perl-devel pcre-devel openssl-devel zlib-devel wget 下载安装FastDFS wget https:/…

vue3 异步组件

vue3中使用异步组件 vue3中使用异步组件可以解决两个问题&#xff1a; 1.提升性能&#xff08;类似于懒加载&#xff09; 2.分包 下载插件 npm i vueuse/core -S 1.提升性能&#xff08;懒加载&#xff09; 父组件 <template><div><h1>异步组件</h1&g…

【计算机视觉】对比学习综述(自己的一些理解)

对比loss 对比学习的 loss&#xff08;InfoNCE&#xff09;即以最 大化互信息为目标推导而来。其核心是通过计算样本表示间的距离&#xff0c;拉近正样本&#xff0c; 拉远负样本&#xff0c;因而训练得到的模型能够区分正负例。 具体做法为&#xff1a;对一个 batch 输入的图…

Matlab绘图系列教程-Matlab 34 种绘图函数示例(上)

Matlab绘图系列教程&#xff1a;揭秘高质量科学图表的绘制与优化 文章目录 Matlab绘图系列教程&#xff1a;揭秘高质量科学图表的绘制与优化第一部分&#xff1a;入门指南1.1 简介关于本教程的目的与范围Matlab绘图在科学研究中的重要性 1.2 准备工作安装Matlab及其工具箱 1.3 …

探索Python条件语句的奇妙世界:解密逻辑与控制流

文章目录 前言if 语句if ... else ...多重判断&#xff08;if ... elif ... else...&#xff09;if 嵌套猜数字游戏三目运算符 前言 Python的条件语句用来根据特定的条件决定程序的执行流程。它允许程序根据条件的真假执行不同的代码块&#xff0c;从而实现不同情况下的不同操…

ES6: 模版字符串

前言: ES5 中我们表示字符串的时候使用 或者 "" 作用: 在 ES6 中&#xff0c;我们还有一个东西可以表示字符串&#xff0c;就是 &#xff08;反引号&#xff09; let str hello worldconsole.log(typeof str) // string和单引号还有双引号的区别: 反引号可以换行…

《面向分布式云的直播及点播云技术创新方案》获中国信通院“分布式云技术创新先锋案例”

由中国信息通信研究院、中国通信标准化协会主办的第三届“云边协同大会”于 6 月 30 日在京举办。阿里云视频云团队凭借 《面向分布式云的直播及点播云技术创新方案》 在一众产品服务中脱颖而出&#xff0c;荣获「分布式云技术创新先锋案例」。 面向分布式云技术的直播及点播云…

83、基于STM32单片机录音机录音笔语音存储回放TF卡TFT屏系统设计(程序+原理图+PCB源文件+参考论文+硬件设计资料+元器件清单等)

单片机主芯片选择方案 方案一&#xff1a;AT89C51是美国ATMEL公司生产的低电压&#xff0c;高性能CMOS型8位单片机&#xff0c;器件采用ATMEL公司的高密度、非易失性存储技术生产&#xff0c;兼容标准MCS-51指令系统&#xff0c;片内置通用8位中央处理器(CPU)和Flash存储单元&a…

git介绍和使用

目录 一、git概述 1、简介 2、下载安装 二、git代码托管服务 1、常用的 Git 代码托管服务 2、使用码云代码托管服务 三、git常用命令 1、git全局设置 2、获取git仓库 3、工作区、暂存区、版本库 概念 4、Git工作区中文件的状态 5、本地仓库操作 6、远程仓库操作 …

python简单实现人脸检测/跟随

import cv2# 加载人脸识别器的模型 face_cascade cv2.CascadeClassifier(cv2.data.haarcascades haarcascade_frontalface_default.xml)# 打开摄像头 cap cv2.VideoCapture(0)# 初始化人脸框位置 prev_faces []# 定义绘制带圆角矩形边框的函数 def draw_rounded_rectangle(…

pip安装opencv-python不成功

一个比较笨但还算有效的方法&#xff1a;如果你的python版本较低&#xff0c;如现在2023-07-04使用python3.6环境&#xff0c;使用pip默认安装会是最新的4.8.0.7版本&#xff0c;但事实上这个版本不支持py3.6环境&#xff0c;所以你需要去这里查支持py3.6的最近的一个版本是什么…

从 AI 增强到大模型,企业使用数据的方式又将如何变化?

AI&#xff08;Artificial Intelligence&#xff0c;人工智能&#xff09;的发展不过百年&#xff0c;却已经深刻影响着人们的思维和见解&#xff0c;并逐渐关联到每个人生活和工作的方方面面。从最初的规则引擎和引入统计学方法&#xff0c;到基于知识表示和推理机制的专家系统…

VScode中的插件

开启VScode中最简单的内部浏览器 - 可以访问外网 - Browser Preview 插件安装&#xff1a; 插件使用&#xff1a;由下角 - 状态栏 - VS Browser按钮 live sass compiler-vscode插件将scss编译为css live sass compiler是VSCode扩展&#xff0c;可以实时地将SASS / SCSS文件…

POSTGRESQL SQL 执行用 IN 还是 EXISTS 还是 ANY

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请联系 liuaustin3 &#xff0c;在新加的朋友会分到3群&#xff08;共…