性能优化(CPU优化技术)-NEON指令介绍

「发表于知乎专栏《移动端算法优化》」

本文主要介绍了 NEON 指令相关的知识,首先通过讲解 arm 指令集的分类,NEON寄存器的类型,树立基本概念。然后进一步梳理了 NEON 汇编以及 intrinsics 指令的格式。最后结合指令的分类,使用例子讲述 NEON 指令的使用方法。

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:高性能(HPC)开发基础教程
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

目录

一、 概述

二、NEON指令格式

2.1 Armv7,Armv8,Armv9的介绍

2.2 向量寄存器介绍

2.2.1 AArch64 向量寄存器

2.2.2 AArchh32 / ARMV7向量寄存器

2.3 汇编指令格式介绍

2.3.1 AArch64汇编指令格式

2.3.2 AArch32 / Armv7汇编指令格式

2.4 intrinsics指令格式

2.4.1 向量类型格式

2.4.2 NEON内联函数格式

三、intrinsics 指令介绍

3.1 intrinsics指令分类

3.2 NEON intrinsics指令详述

3.2.1 Load/Store

3.2.2 Arithmetic

3.2.3 Multiply

3.2.4 Shift

3.2.5 Logical and compare

3.2.6 Floating-point

3.2.7 Permutation

3.2.8 Miscellaneous

3.2.9 Data processing

3.2.10 Type conversion

四、NEON intrisics 指令在x86平台的仿真

五、 NEON指令的应用

5.1 RGB de-interleave 加载 / interleave 存储

5.2 查表操作

5.3 边缘处理

5.4 SAD操作

六、总结


一、 概述

ARM NEON 可以提升计算机视觉等计算密集型程序的性能,编译器可以将 C/C++ 代码自动转换为 NEON 指令。但是想要有更好的性能还是需要手工编写 NEON 代码,熟练掌握 NEON 指令是第一步。

本文接下来会详细的介绍 Armv7 和 Armv8 架构下 NEON 向量寄存器、NEON 汇编指令格式、NEON Intrinsics 指令格式、常用的 Intrinsics 指令以及作用、在 x86 平台调试 NEON 代码,最后针对几个常用的 Intrinsics 指令结合实例进行说明。

二、NEON指令格式

2.1 Armv7,Armv8,Armv9的介绍

Armv7-A 和 Armv8-A 的关系如下图所示:

ARM ISA

Armv8-A 的执行状态可以分为 AArch64 和 AArch32 两种状态。

  • AArch64 是 64 位执行状态,支持 A64 指令集。
  • AArch32 是 32 位执行状态,支持 T32 和 A32 指令集,同时 AArch32 与 AArch64 中一些的功能保持一致,而且 AArch32 兼容 Armv7-A。

ARMV8 支持浮点类型的除法向量操作,这是ARMV7所没有的。另外AArch64还支持double类型的操作。

Armv9-A 是 arm 当前最新的指令架构,Armv9-A 除了向前兼容 Armv8-A,在性能计算上有了很大的提升,主要表现在安全、AI 以及改进矢量扩展(SVE2)和 DSP 能力。

2.2 向量寄存器介绍

向量寄存器用来存放向量数据,每个向量元素的类型必须相同。向量寄存器根据处理元素的大小可以划分为 2/4/8/16 个通道。

SIMD register

2.2.1 AArch64 向量寄存器

AArch64 有 32 个 128bit 的向量寄存器,这些寄存器又可以划分为:

  • 32 个 128bit 的 V 寄存器,V0~V31。
  • 32 个 64bit 的 D 寄存器,D0~D31。
  • 32 个 32bit 的 S 寄存器,S0~S31。

每种类型寄存器的映射关系如下:

AArch64 SIMD register

2.2.2 AArchh32 / ARMV7向量寄存器

AArch32/Armv7 有 16 个 128bit 的向量寄存器,这些寄存器又可以划分为:

  • 16 个128bit 的 Q 寄存器,Q0~Q15。
  • 32 个 64bit 的 D 寄存器,D0~D31。
  • 32 个 32bit 的 S 寄存器,S0~S31。

每种类型寄存器的映射关系如下:

AArch32 SIMD register

2.3 汇编指令格式介绍

AArch64 与AArch32 / Armv7-A 的 NEON 汇编指令除了种类上存在差异,格式上也存在很大差异。

其中指令中有一些通用的书写格式, 含义如下:

  • {}, 表示可选项
  • <>, 表示必选项

2.3.1 AArch64汇编指令格式

{<prefix>}<op>{<suffix>} Vd.<T>, Vn.<T>, Vm.<T>

1)<prefix> 表示前缀名字,包括以下几类:

  • S/U/F/P:表示数据类型,分别为 有符号整型/无符号整型/浮点型/布尔型
  • Q:表示饱和(Saturating)计算。
  • R:表示舍入(Rounding)计算, Rounding 操作等价于加上 0.5 之后再截断。
  • H:表示折半(Halving)计算。
  • D:表示翻倍(Doubling)算。

2)<op> 表示具体的操作,例如 ADDSUB 等等

3)<suffix> 表示后缀名字,包括以下几类:

  • V:表示 Reduction 计算。
  • P:表示 Pairwise 计算。
  • H:表示结果只取每个通道的高半部分(High)。
  • L/N/W/L2/N2/W2:表示数据长度的变化
    • L / L2 :表示输出向量是输入向量长度的 2 倍,其中 L 表示输入寄存器的低 64bit 数据有效,L2 表示输入寄存器的高 64bit 数据有效。

L/L2

    • N/N2:表示输出向量是输入向量的 1/2 倍,N 表示输出向量只有低 64bit 有效,N2 则表示输出向量只有高 64bit 有效。

N/N2

    • W/W2:表示输出向量和第一个输入向量长度相等,且这两个向量是第二个向量长度的 2 倍,其中 W 表示第二个输入向量的低 64bit 有效,W2 表示第二输入向量的高 64bit 有效。

W/W2

4)<T> 表示单个通道的数据类型,8B/16B/4H/8H/2S/4S/2D,B 表示 8bit,H 表示 16bit,S 表示 32bit,D 表示 64bit。

  • 汇编指令例子

SQRSHRN2 表示对向量进行 Rouding 类型的右移操作,并对结果做饱和计算,最后将结果赋给目的向量的高半部分,并保持低半部分不改变,具体示例如下

// 指令语句作用:
//             将 V2 向量中每个元素按照 Rounding 方式右移动 2 位,然后对结果做饱和操作, 
//             并将结果保存到V0上半部分,而且保证V0的下半部分保持不变
// 指令格式说明:
//                 S -- 表示有符号操作
//                 Q -- 表示饱和操作
//                 R -- 表示舍入操作
//               SHR -- 表示向右位移
//                N2 -- 表示将结果保存到输出向量的高 64bit
//             V2.2D -- 表示输入向量寄存器,长度为 128bit,一共两个通道,每个通道 64bit
//             V0.4S -- 表示输出向量寄存器,长度为 128bit,一共四个通道,每个通道 32bit

SQRSHRN2 V0.4S,V2.2D,2

// 伪代码如下:
int shift = 2;
int round_const = (1 << (shift - 1));
V0[2] = SAT((V2[0] + round_const) >> shift)
V0[3] = SAT((V2[1] + round_const) >> shift)

SQRSHRN2

2.3.2 AArch32 / Armv7汇编指令格式

V{<mod>}<op>{<shape>}{<cond>}{.<dt>}<dest1>{,<dest2>},<src1>{,<src2>}

1)V AArch32 / Armv7 的汇编指令以"V"开头

2)<mod> 该修饰字可以表示为以下类型:

  • Q, 表示饱和(Saturating)计算。
  • R, 表示舍入(Rounding)计算,Rounding 操作等价于加上 0.5 之后再截断。
  • H, 表示折半(Halving)计算。
  • D, 表示翻倍(Doubling)计算。

3)<op> 表示具体的操作,例如 ADDSUB等等

4)<shape> 表示数据长度的变化,L/N/W。

5)<cond> 表示指令执行的条件

6).<dt> 表示数据类型,默认为第二个操作数的数据类型。如果第二个操作数不存在,为第一个操作数类型,仍不存在为结果操作数类型。

7)<dest> 表示输出操作数

8)<src1> <src2>表示两个输入操作数

汇编指令例子

VQDMULL 表示两向量相乘,结果乘以 2

// 指令语句作用:
//              64bit 向量 D1 和 D3 中每个元素对应相乘,并将结果乘以 2 
//              最后的结果做饱和之后赋值给 128bit 向量 Q0
//             
// 指令格式说明:
//              Q -- 表示饱和操作
//              D -- 表示 doubling 操作,即乘以 2
//            MUL -- 表示乘法操作
//              L -- 输出向量是输入向量长度的 2 倍
//           .S16 -- 表示操作元素的数据类型为有符号 16bit
//             Q0 -- 表示输出向量寄存器,长度为 128bit
//             D1 -- 表示输入向量寄存器,长度为 64bit
//             D3 -- 表示输入向量寄存器,长度为 64bit

VQDMULL.S16 Q0, D1, D3

// 伪代码
for (int i = 0; i < 4; i++)
{
    q0[i] = SAT(d1[i] * d3[i] * 2)
}

VQDMULL.S16

2.4 intrinsics指令格式

相比于汇编指令,NEON Intrinsics 是一种更简单的编写 NEON 代码的方法,NEON Intrinsics 类似于 C 函数调用,在编译时由编译器替换为相应的汇编指令,使用时需要包含头文件arm_neon.h

2.4.1 向量类型格式

// 非数组向量格式
<type><size>x<number_of_lanes>_t
// 数组向量格式
<type><size>x<number_of_lanes>x<length_of_array>_t

1)<type> 数据类型,如 int/uint/float/poly

2)<size> 元素大小,如8/16/32/64。

3) <number_of_lanes> 通道数。

4) <length_of_array> 数组中元素个数。

向量类型示意图

2.4.2 NEON内联函数格式

v<mod><opname><shape><flags>_<type>

1)<mod>

  • q:表示饱和计算,例如
// a加b的结果做饱和计算
int8x8_t vqadd_s8(int8x8_t a, int8x8_t b); 
  • h:表示折半计算,例如
// a减b的结果右移一位
int8x8_t vhsub_s8(int8x8_t a, int8x8_t b); 
  • d:表示加倍计算,例如
// a乘b的结果扩大一倍, 最后做饱和操作
int32x4_t vqdmull_s16(int16x4_t a, int16x4_t b); 
  • r:表示舍入计算,例如
// 将a与b的和减半,同时做rounding 操作, 每个通道可以表达为: (ai + bi + 1) >> 1
int8x8_t vrhadd_s8(int8x8_t a, int8x8_t b); 
  • p:表示pairwise计算。例如
// 将a, b向量的相邻数据进行两两和操作
int8x8_t vpadd_s8(int8x8_t a, int8x8_t b);

2) <opname> 表示具体操作,比如 addsub

3) <shape>

  • l:表示long,输出向量的元素长度是输入长度的2倍,例如
uint16x8_t vaddl_u8(uint8x8_t a, uint8x8_t b);
  • n:表示 narrow,输出向量的元素长度是输入长度的1/2倍,例如
uint32x2_t vmovn_u64(uint64x2_t a);
  • w:表示 wide,第一个输入向量和输出向量类型一样,且是第二个输入向量元素长度的2倍,例如
uint16x8_t vsubw_u8(uint16x8_t a, uint8x8_t b);
  • _high:AArch64专用,而且和 l/n 配合使用。
    • 当使用 l(Long) 时,表示输入向量只有高 64bit 有效;
    • 当使用 n(Narrow) 时,表示输出只有高 64bit 有效。
// a 和 b 只有高 64bit 参与运算
int16x8_t vsubl_high_s8(int8x16_t a, int8x16_t b);
  • _n:表示有标量参与向量计算,例如
// 向量 a 中的每个元素右移 n 位
int8x8_t vshr_n_s8(int8x8_t a, const int n);
  • _lane: 指定向量中某个通道参与向量计算,例如
// 取向量 v 中下标为 lane 的元素与向量 a 做乘法计算
int16x4_t vmul_lane_s16(int16x4_t a, int16x4_t v, const int lane);

4) <flags>

  • q:表示使用 128bit 的向量,否则使用 64bit 的向量。

5) <type> 表示单个通道的数据类型,有u8s8u16s16u32s32f32f64

内联函数结构示意图

三、intrinsics 指令介绍

3.1 intrinsics指令分类

功能类别介绍
Load/Store对数据进行向量加载和存储,既可以对单个数据进行加载和存储,也可以对向量结构体数据进行加载和存储
Arithmetic对整数和浮点数向量加减运算
Multiply整型或浮点型的向量乘法运算,同时包含了乘法和加法混合运算,以及乘法和减法的运算的混合运算
Shift向量位移操作,其中位移数据可以是立即数也可以是向量
Logical and compare包含了逻辑运算(与或非运算等)和比较运算(等于、大于、小于等)
Floating-point包含了浮点和其他类型数据之间的相互转化操作
Permutation对向量进行重排操作
Misecllaneous标量数据赋值到向量的操作
Data processing一般性处理,极值操作、绝对值差、数值取反、平方根倒数等
Type conversion数值类型转换,数据的组合及提取等

3.2 NEON intrinsics指令详述

本节将对每种类型的 NEON intrinsics 指令做出详细的描述。

3.2.1 Load/Store

  • 以解交织的方式加载数据
// 以解交织方式加载数据到n个向量寄存器, n为1~4
Result_t vld[n]<q>_type(Scalar_t *p_addr);

// 以解交织方式加载数据到n个向量寄存器的第N通道, n为1~4
Result_t vld[n]<q>_lane_type(Scalar_t *p_addr, Vector_t M, int N);
  • 以交织的方式存储数据
// 将n个向量寄存器数据以交织方式存储到内存中, n为1~4
void vst[n]<q>_type(Scalar_t* N, Vector_t M);

// 将n个寄存器的N通道数据以交织方式存储到内存中, n为1~4
void vst[n]<q>_lane_type(Scalar_t *p_addr, Vector_t M, int N);

2 个向量中多通道 load/store, 以及单个通道的load/store

3.2.2 Arithmetic

  • 整数和浮点数的加减运算。
// 基本的加减操作
Result_t vadd<q>_type(Vector1_t N, Vector2_t M);
Result_t vsub<q>_type(Vector1_t N, Vector2_t M);

// L(Long)类型的指令加减运算,输出向量长度是输入的两倍。
Result_t vaddl_type(Vector1_t N, Vector2_t M);
Result_t vsubl_type(Vector1_t N, Vector2_t M);

// W(Wide)类型的指令加减运算,第一个输入向量的长度是第二个输入向量长度的两倍。
Result_t vaddw_type(Vector1_t N, Vector2_t M);
Result_t vsubw_type(Vector1_t N, Vector2_t M);

// H(half)类型的加减运算;将计算结果除以2。
Result_t vhadd<q>_type(Vector1_t N, Vector2_t M);
Result_t vhsub<q>_type(Vector1_t N, Vector2_t M);

// Q(Saturated)饱和类型的加减操作
Result_t vqadd<q>_type(Vector1_t N, Vector2_t M);
Result_t vqsub<q>_type(Vector1_t N, Vector2_t M);

// RH(Rounding Half)类型的加减运算
Result_t vrhadd<q>_type(Vector1_t N, Vector2_t M);
Result_t vrhsub<q>_type(Vector1_t N, Vector2_t M);

// HN(half Narrow)类型的加减操作
Result_t vaddhn_type(Vector1_t N, Vector2_t M);
Result_t vsubhn_type(Vector1_t N, Vector2_t M);

// RHN(rounding half Narrow)类型的加减操作
Result_t vraddhn_type(Vector1_t N, Vector2_t M);
Result_t vrsubhn_type(Vector1_t N, Vector2_t M);

vhadd_s32 instrisics指令的操作

3.2.3 Multiply

  • 整型和浮点型的乘法运算, 参与计算的都是向量
// 基本乘法操作
Result_t vmul<q>_type(Vector1_t N, Vector2_t M);

// l(Long)类型的乘法操作
Result_t vmull_type(Vector1_t N, Vector2_t M);

// QDL(Saturated, Double, Long)类型的乘法操作
Result_t vqdmull_type(Vector1_t N, Vector2_t M);

// 基本的乘加和乘减操作
Result_t vmla<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);
Result_t vmls<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);

// L(Long)类型的乘加和乘减操作
Result_t vmlal_type(Vector1_t N, Vector2_t M, Vector3_t P);
Result_t vmlsl_type(Vector1_t N, Vector2_t M, Vector3_t P);

// QDL(Saturated, Double, Long)类型的乘加和乘减操作
Result_t vqdmlal_type(Vector1_t N, Vector2_t M, Vector3_t P);
Result_t vqdmlsl_type(Vector1_t N, Vector2_t M, Vector3_t P);

// QDLH(Saturated, Double, Long, Half)类型的乘法操作
Result_t vqdmulh<q>_type(Vector1_t N, Vector2_t M);

// QRDLH(Saturated, Rounding Double, Long, Half)类型的乘法操作
Result_t vqrdmulh<q>_type(Vector1_t N, Vector2_t M);
  • 带通道类型的乘法操作
// 基本的乘法操作
Result_t vmull_lane_type(Vector1_t N, Vector2_t M, int n);

// 基本的乘加和乘减操作
Result_t vmla<q>_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);
Result_t vmls<q>_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);

// L(long) 类型的乘加和乘减操作
Result_t vmlal_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);
Result_t vmlsl_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);

// QDL(Saturated, Double, long) 类型的乘加和乘减操作
Result_t vqdmlal_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);
Result_t vqdmlsl_lane_type(Vector1_t N, Vector2_t M, Vector3_t P, int n);

// QDH(Saturated, Double, Half) 类型的操作
Result_t vqdmulh<q>_lane_type(Vector1_t N, Vector2_t M, int n);

vmla_lane_s32 intrinsics 指令的操作

  • 向量和标量的乘法
// 基本的向量和标量的乘法
Result_t vmul<q>_n_type(Vector_t N, Scalar_t M);

// L(Long) 类型的向量和标量的乘法
Result_t vmull_n_type(Vector_t N, Scalar_t M);

// QDL(Saturated, Double, long) 类型的向量和标量的乘法
Result_t vqdmull_n_type(Vector_t N, Scalar_t M);

// QDH(Saturated, Double, Half) 类型的向量和标量的乘法
Result_t vqdmulh<q>_n_type(Vector_t N, Scalar_t M);

// QRDH(Saturated, Double, Half) 类型的向量和标量的乘法
Result_t vqrdmulh<q>_n_type(Vector_t N, Scalar_t M);

// L(Long) 类型的乘加和乘减操作
Result_t vmlal_n_type(Vector1_t N, Vector2_t M, Scalar_t P);
Result_t vmlsl_n_type(Vector1_t N, Vector2_t M, Scalar_t P);

// QDL(Saturated, Double, long) 类型的乘加和乘减
Result_t vqdmlal_n_type(Vector1_t N, Vector2_t M, Scalar_t P);
Result_t vqdmlsl_n_type(Vector1_t N, Vector2_t M, Scalar_t P);

3.2.4 Shift

  • 立即数类型的位移
// 基本的立即数左移和右移
Result_t vshr<q>_n_type(Vector_t N, int n);
Result_t vshl<q>_n_type(Vector_t N, int n);

// R(rounding) 类型的右移操作
Result_t vrshr<q>_n_type(Vector_t N, int n);

// QL(Saturated, long) 类型的右移操作
Result_t vqshl<q>_n_type(Vector_t N, int n);

// 右移累加操作
Result_t vsra<q>_n_type(Vector1_t N, Vector2_t M, int n);

// R(rounding) 类型的右移累加操作
Result_t vrsraq_n_type(Vector1_t N, Vector2_t M, int n);

// Q(Saturated) 类型的左移操作,而且输入是有符号,输出是无符号的
Result_t vqshluq_n_type(Vector_t N, int n);

// N(Narrow) 类型的右移操作
Result_t vshrn_n_type(Vector_t N, int n);

// QN(Saturated, Narrow) 类型的右移操作, 而且输入是有符号,输出是无符号的
Result_t vqshrun_n_type(Vector_t N, int n);

// QRN(Saturated, Rounding, Narrow) 类型的右移操作, 而且输入是有符号,输出是无符号的
Result_t vqrshrun_n_type(Vector_t N, int n);

// QN(Saturated, Narrow) 类型的右移操作
Result_t vqshrn_n_type(Vector_t N, int n);

// RN(Rounding, Narrow) 类型的右移操作
Result_t vrshrn_n_type(Vector_t N, int n);

// QRN(Rounding, Rounding, Narrow) 类型的右移操作
Result_t vqrshrn_n_type(Vector_t N, int n);

// N(Narrow) 类型的左移操作
Result_t vshll_n_type(Vector_t N, int n);
  • 非立即数类型的位移
// 左移
Result_t vshlq_type(Vector1_t N, Vector2_t M);

// Q(Saturated) 类型的左移操作
Result_t vqshl<q>_type(Vector1_t N, Vector2_t M);

// QR(Saturated, rounding) 类型的左移操作
Result_t vrshl<q>_type(Vector1_t N, Vector2_t M);
  • 移位并插入
// 将向量 M 中各个通道先右移动 n 位, 然后将移动后元素插入到 N 对应的元素中,
// 并保持 N 中每个元素的高 n 位保持不变
Result_t vsri<q>_n_type(Vector1_t N, Vector2_t M, int n);

// 将向量 M 中各个通道先左移动 n 位, 然后将移动后元素插入到 N 对应的元素中,
// 并保持 N 中第每个元素的低 n 位保持不变
Result_t vsli<q>_n_type(Vector1_t N, Vector2_t M, int n);

vsliq_n_u32 intrinsics 指令的操作

3.2.5 Logical and compare

eq 表示相等, ge 表示大于或等于, gt 表示大于, le 表示小于或等于, lt 表示小于
  • 逻辑比较操作,比较结果为true,输出向量的对应通道将被设置为全 1,否则设置为全0 
Result_t vceq<q>_type(Vector1_t N, Vector2_t M);
Result_t vcge<q>_type(Vector1_t N, Vector2_t M);
Result_t vcle<q>_type(Vector1_t N, Vector2_t M);
Result_t vcgt<q>_type(Vector1_t N, Vector2_t M);
Result_t vclt<q>_type(Vector1_t N, Vector2_t M);
  • 向量的绝对值比较,比较结果为true时,输出向量对应通道将被设置为全1,否则设置为全0
Result_t vcage<q>_type(Vector1_t N, Vector2_t M);
Result_t vcale<q>_type(Vector1_t N, Vector2_t M);
Result_t vcagt<q>_type(Vector1_t N, Vector2_t M);
Result_t vcalt<q>_type(Vector1_t N, Vector2_t M);

- 按位与\或\非\异或操作

Result_t vand<q>_type(Vector1_t N, Vector2_t M);
Result_t vorr<q>_type(Vector1_t N, Vector2_t M);
Result_t vmvn<q>_type(Vector_t N);
Result_t veor<q>_type(Vector1_t N, Vector2_t M);

vmvn_s32 intrinsics 指令操作

  • 元素与操作
// 按通道做与操作,为 true 时,将输出向量对应通道设置为全 1,否则设置为全 0
Result_t vtst<q>_type(Vector1_t N, Vector2_t M);
  • 其他
// M 作为 mask,标识是否对 N 做清零操作。当 M 中某位为 1, 则将 N 中对应位清零
Result_t vbic<q>_type(Vector1_t N, Vector2_t M);

// P 作为 mask,按位 select。当 P 中某位是 1 时,将选择 N 中对应位作为输出,否则选择 M
Result_t vbsl<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);

3.2.6 Floating-point

  • 浮点数之间的转化, 以及浮点类型与整数类型之间的转化
// 单精度浮点转化为整数类型
Result_t vcvt<q>_type_f32(Vector_t N);

// 整数类型转化为单精度浮点
Result_t vcvt<q>_f32_type(Vector_t N);

// f16转化为f32
Result_t vcvt_f16_f32(Vector_t N);

// f32转化为f16
Result_t vcvt_f32_f16(Vector_t N);
  • 浮点类型的乘加操作
Result_t vfma<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);
  • 浮点类型的乘减操作
Result_t vfms<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);

vfms intrinsics 指令操作

3.2.7 Permutation

  • 向量提取组合操作
Result_t vext<q>_type(Vector1_t N, Vector2_t M, int n);

vextq_u8 intrinsics 指令操作

  • 查表操作
Result_t vtbl[n]_type(Vector1_t N, Vector2_t M);
Result_t vtbx[n]_type(Vector1_t N, Vector2_t M, Vector3_t P);
  • 向量翻转操作
Result_t vrev64<q>_type(Vector_t N);
Result_t vrev32<q>_type(Vector_t N);
Result_t vrev16<q>_type(Vector_t N);
vrev16<q>_type 按照 16bit 为块,块内数据按照 8bit 为单位进行翻转
vrev32<q>_type 按照 32bit 为块,块内数据按照 8bit,16bit 为单位进行翻转
vrev64<q>_type 按照 64bit 为块,块内数据按照8bit, 16bit, 32bit为单位进行翻转

vrev16_s8, vrev32_s8 intrinsics 指令操作

  • 旋转操作
旋转指令包含了两种矩阵旋转的指令, TRN1TRAN2
Result_t vtrn1<q>_type(Vector1_t N, Vector2_t M);
Result_t vtrn2<q>_type(Vector1_t N, Vector2_t M);

vtrn1q_s32, vtrn2q_s32 intrinsics 指令操作

  • 向量交织和解交织操作
// 交织操作
Result_t vzip<q>_type(Vector1_t N, Vector2_t M);

// 解交织操作
Result_t vuzp<q>_type(Vector1_t N, Vector2_t M);

vzip_u8 intrinsics 指令操作

3.2.8 Miscellaneous

  • 将同一个标量填充到每个向量通道
Result_t vcreate_type(Scalar_t N);
Resutl_t vdup_type(Scalar_t N);
Result_t vdup_n_type(Scalar_t N);
Result_t vdupq_n_type(Scalar_t N);
Result_t vmov_n_type(Scalar_t N);
Result_t vmovq_n_type(Scalar_t N);
  • 将向量中某个通道的数据填充到指定的向量中
Result_t vdup<q>_lane_type(Vector_t N, int n);

vdup_lane_s32 intrinsics 指令操作

3.2.9 Data processing

  • max\min操作
// 基本的 max, min
Result_t vmax<q>_type(Vector1_t N, Vector2_t M);
Result_t vmin<q>_type(Vector1_t N, Vector2_t M);

// pairwise 类型的 max, min
Result_t vpmax_type(Vector1_t N, Vector2_t M);
Result_t vpmin_type(Vector1_t N, Vector2_t M);

vpmin_s16 intrinsics 指令操作

  • 差的绝对值操作
// 基本的绝对值计算
Result_t vabs<q>_type(Vector_t N);

// 差的绝对值操作
Result_t vabd<q>_type(Vector1_t N, Vector2_t M);

// L(Long)类型, 差的绝对值
Result_t vabdl_type(Vector1_t N, Vector2_t M);

// 差的绝对值,并和另一个向量相加
Result_t vaba<q>_type(Vector1_t N, Vector2_t M, Vector3_t P);

// L(Long)类型, 差的绝对值,并和另一个向量相加, 输出是输入长度的两倍
Result_t vabal_type(Vector1_t N, Vector2_t M, Vector3_t P);
  • 取反操作
// 基本的取反操作
Result_t vneg<q>_type(Vector_t N);

// Q(Saturated)类型,带饱和的取反操作
Result_t vqneg<q>_type(Vector_t N);
  • 按位统计 0 或 1 的个数
// 统计每个通道 1 的个数
Result_t vcnt<q>_type(Vector_t N);

// 从符号位开始,统计每个通道中与符号位相同的位的个数,且这些位必须是连续的
Result_t vcls<q>_type(Vector_t N);

// 从符号位开始,统计每个通道连续0的个数
Result_t vclz<q>_type(Vector_t N);
  • 倒数和平方根求倒计算
// 对每个通道近似求倒
Result_t vrecpe<q>_type(Vector_t N);

// 对每个通道使用 newton-raphson 求倒
Result_t vrecps<q>_type(Vector1_t N, Vector2_t M);

// 对每个通道平方根近似求倒
Result_t vrsqrte<q>_type(Vector_t N);

// 对每个通道使用 newton-raphson 平方根近似求倒
Result_t vrsqrts<q>_type(Vector1_t N, Vector2_t M);
  • 向量赋值
// N(Narrow) 类型的赋值,取输入每个通道的高半部分,赋给目的向量
Result_t vmovn_type(Vector_t N);

// L(long) 类型的赋值,使用符号拓展或者 0 拓展的方式,将输入通道的数据赋给输出向量
Result_t vmovl_type(Vector_t N);

// QN(Saturated, Narrow) 类型的赋值,饱和的方式赋值,输出是输入宽度的两倍
Result_t vqmovn_type(Vector_t N);

// QN(Saturated, Narrow) 类型的赋值,饱和的方式赋值,输出是输入宽度的两倍,而且输入为有符号数据,输出无符号
Result_t vqmovun_type(Vector_t N);

3.2.10 Type conversion

  • 元素类型的重新解释
Result_t vreinterpret<q>_DSTtype_SRCtype(Vector1_t N);
  • 两个 64bit 向量组合成一个 128bit 向量
Result_t vcombine_type(Vector1_t N, Vector2_t M);
  • 提取 128bit 向量的高半部分或则低半部分
Result_t vget_high_type(Vector_t N);
Result_t vget_low_type(Vector_t N);

vget_low_s32 \ vget_high_s32 intrinsics 指令操作

四、NEON intrisics 指令在x86平台的仿真

为了便于 NEON 指令从 ARM 平台移植到 x86 平台使用,Intel 提供了一套转化接口 NEON2SSE,用于将 NEON 内联函数转化为 Intel SIMD(SSE) 内联函数。大部分 x86 平台 C/C++编译器均支持 SSE,因此只需下载并包含接口头文件NEON_2_SSE.h,即可在x86平台调试 NEON 指令代码。

#ifdef ARM_PLATFORM
#  include <arm_neon.h>
#else
#  include "NEON_2_SSE.h"
#endif
NEON2SSE 提供了 1700 多个 NEON 内联函数的转换接口,运算结果确保与 ARM 平台准确一致。

性能方面:

  • 对于使用 128 位向量运算的 NEON 操作,NEON2SSE 在 x86 平台能得到与 ARM 类似的加速比;
  • 如果使用 64 位向量做 NEON 运算,x86 平台的加速比将低于 ARM 平台。

五、 NEON指令的应用

本节将会结合实际应用场景介绍 NEON 指令的使用方法。

5.1 RGB de-interleave 加载 / interleave 存储

使用 vld3q 以解交织的方式加载 RGB 图像;vst3q 以交织的方式存储 RGB 图像。

// 输入地址为 in_ptr, 输出向量为 vec
uint8x16x3_t vec = vld3q(in_ptr);

// 输出地址为 out_ptr, 输入为 uint8x16x3_t 类型的 RGB 向量
vst3q(out_ptr, vec);

load/store 示意图

5.2 查表操作

大多数的重排操作中,重排模式都是固定的,这在使用上带来了一定的局限性。

NEON 在常规重排指令外,支持使用TBLTBX指令来完成任意模式的重排操作,这两条指令本身也是查表指令。

  • TBL和 TBX 输入参数介绍:
    • 向量类型的下标,通过下标向量到表中查找对应的元素。
    • 向量类型的表,最多可以有 4 个寄存器向量值。
这两条指令使用下标向量到对应表中索引数据,并把找到的数据存放到输出向量中去。
TBLTBX的不同在于:当没有索引值超过范围时, TBL返回 0,  TBX保持原有目的数据不变。
// a表示table, b表示index, c表示结果
uint8x8_t c = vtbl2_u8(a, b)

vtbl2_u8 intrisics 操作

5.3 边缘处理

处理图像边缘时,经常会有使用常数填充边界的情况。

NEON 开发中,可以使用DUP指令将常数填充到向量中,然后使用EXT指令组建新向量。

例如 7x7 的 boxfilter,处理边界时需要填充 3 个像素的值。
  • EXT指令还常常用于滤波向量的重组操作。
// 构造边界填充向量
uint8_t c_0 =0;
uint8x8_t v_c0 = v_dup_n_u8(c_0);

// 构建v_1
uint8x8_t v_1 = vext_u8(v_c0, v_0, 5)

// 使用 vext 构建边界向量,v0 表示从纵坐标为 0 起始的向量
uint8x8_t v_border = vext_u8(v_1, v_c0, 3)

边界扩展示意图

5.4 SAD操作

SAD(sum of absolute difference) 运算可以使用 NEON 指令来加速。

  • 首先使用vabd做差的绝对值计算。
  • 然后使用vdot将上面的结果做累加。
// 初始化 v_sum 和 v_c1  
uint32x4_t v_sum = vmovq_n_u32(0);
uint8x16_t v_c1  = vmovq_n_u8(1);

// v_src0, v_src1为两幅图的输入
// 将做差的绝对值计算
uint8x16_t v_abd_res = vabdq_u8(v_src0, v_src1);

// 做 vdot操作
v_sum = vdotq_u32(v_sum , v_abd_res, v_c1);
...
// 将最后的结果累加
uint32_t res = vaddvq_u32(v_sum);

NEON SAD 操作示意图

六、总结

本文主要介绍了 NEON 指令相关的知识,首先通过讲解 arm 指令集的分类,NEON寄存器的类型,树立基本概念。然后进一步梳理了 NEON 汇编以及 intrinsics 指令的格式。最后结合指令的分类,使用例子讲述 NEON 指令的使用方法。

七、附录

参考资料

[1] ARM Neon Programmer's Guide

[2] ARM NEON programming quick reference

[3] ARM Architecture Reference Manual Armv8, for A-profile architecture

[4] https://developer.arm.com/architectures/instruction-sets/intrinsics/

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/343840.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何基于 ESP32 芯片测试 WiFi 连接距离、获取连接的 AP 信号强度(RSSI)以及 WiFi吞吐测试

测试说明&#xff1a; 测试 WiFi 连接距离&#xff0c;是将 ESP32 作为 WiFi Station 模式来连接路由器&#xff0c;通过在开阔环境下进行拉距来测试。另外&#xff0c;可以通过增大 WiFi TX Power 来增大连接距离。 获取连接的 AP 信号强度&#xff0c;一般可以通过 WiFi 扫描…

机器学习_从线性回归到逻辑回归原理和实战

文章目录 介绍分类问题用线性回归阶跃函数完成分类通过 Sigmiod 函数进行转换逻辑回归的假设函数逻辑回归的损失函数用逻辑回归解决二元分类问题 介绍分类问题 机器学习两个主要应用是回归和分类问题。 逻辑回归算法的本质其实仍然是回归。这个算法也是通过调整权重w和偏置b来…

GBASE南大通用提供给.NET 应用程序访问 GBase 数据库、获取数据、管理数据的一套完整的解决方案

GBase ADO.NET&#xff08;全称是 .NET Framework Data Provider For GBase&#xff09;提 供给.NET 应用程序访问 GBase 数据库、获取数据、管理数据的一套完整的解决 方案。 GBase ADO.NET 的四个核心类及若干功能类具有以下功能&#xff1a;  建立和管理与 GBase 数据库连…

java web mvc-04-Apache Wicket

拓展阅读 Spring Web MVC-00-重学 mvc mvc-01-Model-View-Controller 概览 web mvc-03-JFinal web mvc-04-Apache Wicket web mvc-05-JSF JavaServer Faces web mvc-06-play framework intro web mvc-07-Vaadin web mvc-08-Grails 开源 The jdbc pool for java.(java …

21.云原生之ArgoCD CICD实战(部分待补充)

云原生专栏大纲 文章目录 部署项目介绍项目结构介绍GitLab CI/CDGitLab CI/CD主要特点和功能 部署测试argocd的cd过程CICD工作流准备工作github中工作流文件创建gitlab中工作流文件创建【实操待补充】GitLab CI示例 数据加密之seale sealedBitnami Sealed Secrets介绍Bitnami …

11.前端--CSS-背景属性

1.背景颜色 样式名称&#xff1a; background-color 定义元素的背景颜色 使用方式: background-color:颜色值; 其他说明&#xff1a; 元素背景颜色默认值是 transparent&#xff08;透明&#xff09;      background-color:transparent; 代码演示&#xff1a; 背景色…

盖子的c++小课堂:第二十六讲:双向链表

前言 谢谢各位粉丝的支持,望我早日突破1000粉 双向链表 干货!单链表从原理到实现——附python和C++两个版本 - 知乎单链表是链表家族中的一员,每个节点依旧由 数据域(data)和指针域(next)组成,链表的具体概念下面有介绍: 机器学习入坑者:程序员基本功——链表的基…

大数据学习之Flink算子、了解(Source)源算子(基础篇二)

Source源算子&#xff08;基础篇二&#xff09; 目录 Source源算子&#xff08;基础篇二&#xff09; 二、源算子&#xff08;source&#xff09; 1. 准备工作 2.从集合中读取数据 可以使用代码中的fromCollection()方法直接读取列表 也可以使用代码中的fromElements()方…

“探索C语言操作符的神秘世界:从入门到精通的全方位解析“

各位少年&#xff0c;我是博主那一脸阳光&#xff0c;今天来分享深度解析C语言操作符&#xff0c;C语言操作符能帮我们解决很多逻辑性的问题&#xff0c;减少很多代码量&#xff0c;就好比数学的各种符号&#xff0c;我们现在深度解剖一下他们。 前言 在追求爱情的道路上&…

Google ASPIRE框架:赋予大型语言模型(LLMs)自我评估的新动力

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Vue生命周期;综合案例;工程化开发入门

Vue的生命周期 和 生命周期的四个阶段 思考&#xff1a; 什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff1a;最早可以早到什么时候&#xff1f;&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命…

【C++】C++入门(一)

个人主页 &#xff1a; zxctsclrjjjcph 文章封面来自&#xff1a;艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. C关键字3. 命名空间3.1 命名空间定义3.2 命名空间的使用 4. C输入&输出 1. 前言 C是在C的基础之上&#xff0c;容纳进去了面向对象编程思想&#xff0…

4G物联网LED智慧路灯杆显示屏产品介绍

4GLED显示屏是一种具有4G网络连接功能的LED显示屏。它可以通过4G网络连接到互联网&#xff0c;实现远程管理和控制&#xff0c;方便进行内容更新和管理。同时&#xff0c;4GLED显示屏具有高亮度、高清晰度和高对比度的特点&#xff0c;可以提供清晰明亮的图像和视频展示效果。它…

【前端小点】Vue3中的IP输入框组件

本文章记录,如何在vue3项目开发中,使用ip输入框组件. 之前写过vue2版本的ip组件,为了更好的适应vue3,此次进行vue3代码重写 先上效果图: 禁用效果图: 主要是组件的开发,代码如下,可直接拷贝使用. 大概思路就是: 使用四个输入框拼接,然后给输入内容添加校验操作,添加光标移动,…

灵眸边缘计算产品学习

EASY EAI灵眸科技 | 让边缘AI落地更简单 (easy-eai.com) 产品简介 支持4路1080P30fps视频流采集&#xff0c;四核CPU1.5GHz与2Tops AI边缘算力能力。集成有以太网、Wi-Fi、4G等网络通信外设&#xff1b;RS232、RS485、UART等本地通信接口。HDMI显示屏接口、音频输入输出等交互…

ntp时间适配服务器和ssh免密登录

1&#xff0e;配置ntp时间服务器&#xff0c;确保客户端主机能和服务主机同步时间 服务端server向阿里时间服务器进行时间同步 第一步&#xff1a;定位服务端server #安装软件 [rootserver ~]# yum install chrony -y # 编辑配置文件&#xff0c;定位第3行&#xff0c;修改…

小程序直播项目搭建

项目功能&#xff1a; 登录实时聊天点赞功能刷礼物取消关注用户卡片直播带货优惠券直播功能 项目启动&#xff1a; 1 小程序项目创建与配置&#xff1a; 第一步 需要登录小程序公众平台的设置页面进行配置&#xff1a; 首先需要是企业注册的才可以个人不能开通直播功能。服务类…

动态gif图怎么在线做?简单三步快速上手

使用gif动态图片能够增加图片的吸引力和趣味性&#xff0c;在很多社交平台上gif动态都是用来表达自己的心情的。而且&#xff0c;gif动图可以用于创意设计和艺术制作的宣传等。那么&#xff0c;要怎么制作呢&#xff1f;这时候使用gif制作&#xff08;https://www.gif.cn/&…

【学网攻】 第(6)节 -- 三层交换机实现VLAN间路由

文章目录 【学网攻】 第(1)节 -- 认识网络【学网攻】 第(2)节 -- 交换机认识及使用【学网攻】 第(3)节 -- 交换机配置聚合端口【学网攻】 第(4)节 -- 交换机划分Vlan【学网攻】 第(5)节 -- Cisco VTP的使用 前言 第5章给大家讲了VTP,也是为这节课铺垫,带领大家慢慢进入路由的区…

安全基础~通用漏洞2

文章目录 知识补充盲注Boolean盲注延时盲注报错注入二次注入 知识补充 盲注常用 if(条件,5,0) #条件成立 返回5 反之 返回0 left(database(),1)&#xff0c;database() #left(a,b)从左侧截取a的前b位 盲注 盲注就是在注入过程中&#xff0c;获取的数据不能回显至前端页面。 …