【大数据处理技术实践】期末考查题目:集群搭建、合并文件与数据统计可视化

集群搭建、合并文件与数据统计可视化

  • 实验目的
    • 任务一:
    • 任务二:
  • 实验平台
  • 实验内容及步骤
    • 任务一:搭建具有3个DataNode节点的HDFS集群
      • 集群环境配置
        • 克隆的方式创建 Slave 节点
        • 修改主机名
        • 编辑 hosts 文件
        • 生成密钥
        • 免认证登录
        • 修改 hadoop 的配置文件
        • 编辑 workers 文件
        • 复制配置后的 hadoop 目录传到从机上
      • 启动集群
    • 任务二之实验一 :编程实现合并文件MergeFile的功能
      • 数据下载与上传至Hadoop
      • 打开 eclipse
      • 编写实现合并文件MergeFile的功能的java代码
      • 启动 Hadoop 并运行 Java 代码,合并文件
      • 查看合并后的文件
    • 任务二之实验二:对网站用户购物行为数据集进行统计分析
      • 数据预处理
      • 查看前 5 行记录,每行记录都包含 5 个字段如下:
      • 对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现
      • 按月对用户的购物行为“behavior\_type”进行统计,并将结果通过柱状图进行呈现
  • 总结
  • 实验报告下载

实验目的

任务一:

采用虚拟机的方式搭建一个具有3个DataNode节点的HDFS集群,将搭建过程记录在实验报告中。采用虚拟机的方式,先配置好Hadoop的主节点,然后通过克隆的方式创建Slave节点,实现3节点的HDFS集群

任务二:

实验一:使用任务一搭建的集群,编程实现合并文件MergeFile的功能:

将数据集trec06p\_sample中的文件合并成为一个文件。假设集群的用户目录为hdfs://localhost:9000/user/hadoop,将合并的结果输出到hdfs://localhost:9000/user/hadoop/merge.txt 中

实验二:使用任务一搭建的集群,对网站用户购物行为数据集进行统计分析:

对用户的购物行为“behavior\_type”进行统计,并将统计结果通过柱状图进行呈现

按月对用户的购物行为“behavior\_type”进行统计,并将结果通过柱状图进行呈现

实验平台

  • 操作系统:Linux(CentOS)
  • 可视化工具:R语言
  • JDK 版本:1.8
  • Java IDE
  • Eclipse
  • Hadoop

实验内容及步骤

任务一:搭建具有3个DataNode节点的HDFS集群

集群环境配置

克隆的方式创建 Slave 节点
  • 1.采用虚拟机的方式,先配置好 Hadoop 的主节点, 此处选用之前配置好的节点作为 master 主机,然后通过克隆的方式创建 Slave 节点,实现 3 节点的 HDFS 集群
    在这里插入图片描述
修改主机名
  • 2.修改主机名,三台虚拟机都要进行的
	#给3台虚拟机设置主机名分别为master、s1和s2。
	#在第一台机器操作
	hostnamectl set-hostname master
	#在第二台机器操作
	hostnamectl set-hostname s1
	#在第三台机器操作
	hostnamectl set-hostname s2

设置完毕后需重启虚拟机:reboot

编辑 hosts 文件
  • 3.编辑 hosts 文件使三者之间能够通信,三台虚拟机都要进行的
	# hosts 配置文件是用来把主机名字映射到IP地址的方法
	# 编辑hosts文件,进入编辑模式 i:
	sudo vi /etc/hosts
	# 在最后添加
	192.168.62.128 master
	192.168.62.129 s1
	192.168.62.130 s2

在这里插入图片描述

生成密钥
    1. 在主机上生成密钥, 三台主机都操作
ssh-keygen -b 1024 -t rsa

在这里插入图片描述

免认证登录
    1. 使 master 能免认证登录其他两个主机
#进入 .ssh目录中
cd .ssh
#id_rsa:私钥 id_rsa.pub :公钥
#在master中对s1和s2进行免密登录?需要把master的公钥放到s1和s2的authorized_key文件里
# 查看mster的公钥
cat id_rsa.pub
# 在master的.ssh目录中执行
ssh-copy-id s1
ssh-copy-id s2
ssh-copy-id master
# s1和s2之间免密登录
#在s1的.ssh目录中执行
ssh-copy-id s2
#在s2的.ssh目录中执行
ssh-copy-id s1
#在master验证能否免密登录
ssh s1

在这里插入图片描述
在这里插入图片描述

修改 hadoop 的配置文件

(注意各配置文件中配置的路径要修改成自己虚拟机实际的相关环境配置路径)

#进入Hadoop的/etc目录下。注意这个路径要根据自己虚拟机中Hadoop的安装路径修改
cd /home/user/usr/demo/hadoop-3.2.4/etc/hadoop
修改hadoop-env.sh文件
vim hadoop-env.sh
#修改JAVA_HOME的路径
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.382.b05-1.el7_9.x86_64
# 修改yarn-env.sh文件的JAVA_HOME。
vim yarn-env.sh
#修改JAVA_HOME的路径
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.382.b05-1.el7_9.x86_64
# 修改core-site.xml文件
vim core-site.xml
# 添加
<configuration>
	<property>
		<name>fs.defaultFS</name>
		<value>hdfs://localhost:9000</value>
	</property>
	<property>
		<name>hadoop.tmp.dir</name>
		<value>/home/user/demo/hadoop-3.2.4/tmp</value>
	</property>
</configuration>
# 配置hdfs-site.xml
vim hdfs-site.xml
# 添加
<configuration>
	<property>
		<name>dfs.replication</name>
		<value>1</value>
	</property>
	<property>
		<name>dfs.permissions</name>
		<value>false</value>
	</property>
</configuration>
# 编辑mapred-site.xml文件
vim mapred-site.xml
<configuration>
	<property>
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
	</property>
</configuration>
# 编辑yarn-site.xml文件
vim yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
	<property>
		<name>yarn.resourcemanager.hostname</name>
		<value>master</value>
	</property>
	<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
	</property>
</configuration>
编辑 workers 文件
# 编辑 workers 文件
vim workers
# 添加
master
s1
s2
复制配置后的 hadoop 目录传到从机上
scp -r /home/user/usr/demo/hadoop-3.2.4/ s1:/home/user/usr/demo/hadoop-3.2.4/
scp -r /home/user/usr/demo/hadoop-3.2.4/ s2:/home/user/usr/demo/hadoop-3.2.4/

启动集群

  1. 在 master 上面使用start-all.sh 启动
    在这里插入图片描述

  2. 通过web端访问http://master:8088/cluster 查看当前集群的进程状态
    在这里插入图片描述

  3. 通过hadoop dfsadmin -report查看当前集群的进程状态,具有3个节点
    在这里插入图片描述

任务二之实验一 :编程实现合并文件MergeFile的功能

使用任务一搭建的集群,编程实现合并文件MergeFile的功能:将数据集trec06p_sample中的文件合并成为一个文件。假设集群的用户目录为hdfs://localhost:9000/user/hadoop,将合并的结果输出到hdfs://localhost:9000/user/hadoop/merge.txt

数据下载与上传至Hadoop

将数据集– trec06p_sample/126下载解压到虚拟机的Downloads目录下,并上传到集群的hdfs://master:9000/user/hadoop/目录下

# 解压
unzip trec06p_sample.zip -d trec06p_sample
#上传
hdfs dfs -put trec06p_sample /user/hadoop
#查看上传后的文件
hdfs dfs -ls -h /user/hadoop/trec06p_sample/126/

在这里插入图片描述

打开 eclipse

cd /usr/local/eclipse
./eclipse

编写实现合并文件MergeFile的功能的java代码

import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;

public class MergeAllFilesInDirectory {
	static class MyPathFilter implements PathFilter {
		public boolean accept(Path path) {
			return true; // 接受所有文件
		}
	}
	
	public static void main(String[] args) throws IOException {
		// 输入目录和输出文件路径
		String inputPath = "hdfs://master:9000/user/hadoop/trec06p_sample/126/";
		String outputPath = "hdfs://master:9000/user/hadoop/merge.txt";
		
		Configuration conf = new Configuration();
		conf.set("fs.defaultFS", "hdfs://master:9000");
		conf.set("fs.hdfs.impl", "org.apache.hadoop.hdfs.DistributedFileSystem");
		
		FileSystem fsSource = FileSystem.get(URI.create(inputPath), conf);
		FileSystem fsDst = FileSystem.get(URI.create(outputPath), conf);
		
		// 获取目录下所有文件
		FileStatus[] sourceStatus = fsSource.listStatus(new Path(inputPath), new MyPathFilter());
		
		// 创建输出文件
		FSDataOutputStream fsdos = fsDst.create(new Path(outputPath));
		
		// 逐个读取文件并写入到输出文件中
		for (FileStatus status : sourceStatus) {
			FSDataInputStream fsdis = fsSource.open(status.getPath());
			byte[] data = new byte[1024];
			int read = -1;
			
			// 打印文件信息
			System.out.println("路径:" + status.getPath() + "    文件大小:" + status.getLen()
			+ "   权限:" + status.getPermission());
			
			while ((read = fsdis.read(data)) > 0) {
				fsdos.write(data, 0, read);
			}
			fsdis.close();
		}
		fsdos.close();
		fsSource.close();
		fsDst.close();
	}
}

启动 Hadoop 并运行 Java 代码,合并文件

在这里插入图片描述

查看合并后的文件

查看合并的结果:hdfs://localhost:9000/user/hadoop/merge.txt
通过web访问http://localhost:9870/explorer.html/user/hadoop,可以查看合并后的文件
在这里插入图片描述
通过命令行使用 cat 命令查看合并后文件内容

hdfs dfs -cat /user/hadoop/merge.txt

在这里插入图片描述

任务二之实验二:对网站用户购物行为数据集进行统计分析

使用任务一搭建的集群,对网站用户购物行为数据集进行统计分析:

  1. 对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现
  2. 按月对用户的购物行为“behavior_type”进行统计,并将结果通过柱状图进行呈现

数据预处理

将数据集small_user下载解压到虚拟机的Downloads目录下,并上传到集群的hdfs://master:9000/user/hadoop/目录下

unzip small_user.zip //解压
head -5 small_user.csv //查看前几行

在这里插入图片描述

查看前 5 行记录,每行记录都包含 5 个字段如下:

  • user_id(用户id)
  • item_id(商品id)
  • behaviour_type(包括浏览、收藏、加购物车、购买,对应取值分别是1、2、3、4)
  • user_geohash(用户地理位置哈希值,有些记录中没有这个字段,且实验中不需要用到,后续把这个字段全部删除)
  • item_category(商品分类)
  • time(该记录产生时间)
head -5 small_user.csv

在这里插入图片描述

对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现

//首先在集群中安装R语言,然后通过运行下面R代码进行统计与可视化
# 读取数据
data <- read.csv("/home/user/Downloads/small_user.csv")

# 统计用户行为类型
behavior_counts <- table(data$behavior_type)

# 转换成数据框
behavior_data <- as.data.frame(behavior_counts)
names(behavior_data) <- c("Behavior_Type", "Count")

# 绘制柱状图
library(ggplot2)

ggplot(behavior_data, aes(x = factor(Behavior_Type), y = Count)) +
geom_bar(stat = "identity", fill = "gray", width = 0.1) +  # 调整柱子宽度为0.5
labs(title = "User Behavior Count", x = "Behavior Type", y = "Count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

在这里插入图片描述

从上图可以得到:大部分消费者行为仅仅只是浏览。只有很少部分的消费者会购买商品。

按月对用户的购物行为“behavior_type”进行统计,并将结果通过柱状图进行呈现

# 读取数据
data <- read.csv("/home/user/Downloads/small_user.csv")

# 提取月份信息
data$month <- substr(data$time, 6, 7)

# 使用ggplot绘制柱状图
library(ggplot2)

ggplot(data, aes(x = factor(behavior_type), fill = factor(month), color = factor(month))) +
geom_bar(position = "dodge", width = 0.1) +
labs(title = "每月用户行为统计", x = "behavior_type", y = "count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_color_manual(values = c("01" = "red", "02" = "blue")) +
guides(color = FALSE) +
facet_grid(. ~ month)

在这里插入图片描述

总结

本次实验深入探索了HDFS集群搭建及大数据处理技术的应用。成功地搭建了具有三个DataNode节点的HDFS集群,通过两种方式实现了该目标。在文件合并和统计分析实验中,我们编程实现了文件合并功能,并成功输出到HDFS指定路径。针对网站用户购物行为数据集,我们对用户行为进行了全面的统计分析,并通过柱状图清晰展现了购物行为的分布情况,为后续数据挖掘提供了可视化支持。这次实验不仅加深了对HDFS集群搭建的理解,也锻炼了在大数据环境下进行文件操作和数据分析的能力。未来的工作将进一步探索大数据技术,以更广泛的数据集和更复杂的分析挑战来拓展这些技能。

实验报告下载

下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/343428.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

软件测试面试题(完整版)

1、B/S架构和C/S架构区别 B/S 只需要有操作系统和浏览器就行&#xff0c;可以实现跨平台&#xff0c;客户端零维护&#xff0c;维护成本低&#xff0c;但是个性化能力低&#xff0c;响应速度较慢 C/S响应速度快&#xff0c;安全性强&#xff0c;一般应用于局域网中&#xff0c…

DFT计算杂谈调查问卷

为更好了解公众号受众对于DFT计算的了解情况以及目标需求&#xff0c;目的以更好更准确并实用地推送给公众号受众所需要的文章&#xff0c;所以本次推送发布调查问卷并收集填写者相关信息。 调查问卷调查内容仅与公众号运营和DFT计算相关&#xff0c;所收集信息仅用作公众号受众…

== 和 equals:对象相等性比较的细微差别

和 equals&#xff1a;对象相等性比较的细微差别 既要脚踏实地于现实生活&#xff0c;又要不时跳出现实到理想的高台上张望一眼。在精神世界里建立起一套丰满的体系&#xff0c;引领我们不迷失不懈怠。待我们一觉醒来&#xff0c;跌落在现实中的时候&#xff0c;可以毫无怨言地…

芋道--如何自定义业务表单,配置对应的工作流程(详细步骤)

需求描述: 芋道的动态表单就不再介绍了&#xff0c;相对来讲比较简单,跟着官网文档就可以实现&#xff0c;本文将详细的介绍如何新建独立的业务表记录申请的信息&#xff0c;并设计对应的工作流。 这里表中的每一条记录&#xff0c;都将通过流程实例编号(process_instance_id )…

HTML标题

我的HTML标题学习小记 HTML的标题功能真的非常实用&#xff01;它们就像是文章的大纲&#xff0c;帮助网页内容呈现出清晰的结构&#xff0c;也就是小题大作一番。 HTML标题的奥秘 在HTML中&#xff0c;我们使用<h1>至<h6>这些标签来定义标题。其中&#xff0c;…

Java 设计者模式以及与Spring关系(六) 装饰和模版方法模式

简介: 本文是个系列一次会出两个设计者模式作用&#xff0c;如果有关联就三个&#xff0c;除此外还会讲解在spring中作用。 23设计者模式以及重点模式 我们都知道设计者模式有3类23种设计模式&#xff0c;标红是特别重要的设计者模式建议都会&#xff0c;而且熟读于心&#…

软件测试|SQL常用语法,你都会吗?

前言 SQL作为一门语言&#xff0c;和其他编程语言一样&#xff0c;都是需要遵循一些特定的规范和准则的&#xff0c;这也就是我们常说的语法&#xff08;Syntax&#xff09;。 下面是几个SQL的语法规则&#xff1a; 所有的 SQL 语法都必须以关键字&#xff08;也称命令&…

图片有路人的部分怎么抠掉?看完你就会

在我们拍摄的照片中&#xff0c;常常会出现一些不想要的元素&#xff0c;比如路人、路边的垃圾桶、广告牌等等&#xff0c;有时候他们的出现可能会破坏照片的整体美感。那么&#xff0c;如何把图片中的路人部分抠掉呢&#xff1f;本文将为你详细介绍多种方法&#xff0c;帮助你…

Java基础 - 09 Set之linkedHashSet , CopyOnWriteArraySet

LinkedHashSet和CopyOnWriteArraySet都是Java集合框架提供的特殊集合类&#xff0c;他们在特定场景下有不同的用途和特点。 LinkedHashSet是Java集合框架中的一种实现类&#xff0c;它继承自HashSet并且保持插入顺序。它使用哈希表来存储元素&#xff0c;并使用链表来维护插入…

让Mac与Windows合二为一:Microsoft Remote Desktop for Mac的魅力

在数字时代&#xff0c;远程连接已成为工作、学习和生活的必备工具。而Microsoft Remote Desktop for Mac正是这样一款能够让你随时随地&#xff0c;轻松连接到Windows系统的强大工具。 Microsoft Remote Desktop for Mac不仅提供了高效、稳定的远程访问体验&#xff0c;更凭借…

aspose-cells-20.7.jar 去除水印及次数限制

1.使用 jd-gui.exe 反编译查看&#xff0c;直接搜索 License 1.修改 public static boolean isLicenseSet() {return (a ! null);}改成 public static boolean isLicenseSet() {return true;}2.修改 public void setLicense(InputStream stream) {Document document null;if (…

Acwing-语法基础习题综合[难度:简单]

目录 题目序号604&#xff1a; 圆的面积 题目序号605&#xff1a; 简单乘积 题目序号606&#xff1a; 平均数1 题目序号607&#xff1a; 平均数2 题目序号608&#xff1a; 差 题目序号609&#xff1a; 工资 题目序号611&#xff1a; 简单计算 题目序号612&#xff1a; …

springboot 整合 ElasticSearch 方法 (一)

下载 ES 相当于安装 MySQL, 可以在官网上下载 (链接在后面). 要注意安装的 ES 的版本要和项目中用的 Springboot 的版本对应. 比如我用的 Springboot 版本是 2.6, 所以ES要下载7.15 版本的. 官网链接: https://www.elastic.co/cn/downloads/elasticsearch 点右边这个查看更多…

Linux:动静态库的概念与制作使用

文章目录 动静态库基础认知动静态库基本概念静态库的制作库的概念包的概念 静态库的使用第三方库小结 动态库的制作动态库的使用动态库如何找到内容&#xff1f;小结 本篇要谈论的内容是关于动静态库的问题&#xff0c;具体的逻辑框架是建立在库的制作&#xff0c;库的使用&…

javaWebssh运动会管理系统myeclipse开发mysql数据库MVC模式java编程计算机网页设计

一、源码特点 java ssh运动会管理系统是一套完善的web设计系统&#xff08;系统采用ssh框架进行设计开发&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,M…

JavaWeb之JavaScript-Vue --黑马笔记

什么是JavaScript&#xff1f; JavaScript&#xff08;简称&#xff1a;JS&#xff09; 是一门跨平台、面向对象的脚本语言。是用来控制网页行为的&#xff0c;它能使网页可交互。 JavaScript 和 Java 是完全不同的语言&#xff0c;不论是概念还是设计。但是基础语法类似。 …

HackTheBox - Medium - Linux - Ransom

Ransom 外部信息搜集 端口扫描 循例nmap Web枚举 /api/login 它似乎受nosql注入影响&#xff0c;我们能够登录成功 把返回的cookie丢到cookie editor&#xff0c;回到主页 zip是加密的 Foothold 我们可以得知加密类型是ZipCrypto 谷歌能够找到这篇文章&#xff0c;它将告诉我…

STATA DEA代码说明及样本数据

STATA_DEA代码说明及样本数据 含DEA模型代码和malmquist指数stata代码 包含具体说明 数据包络分析&#xff08;Data envelopment analysis&#xff0c;DEA&#xff09;是运筹学和研究经济生产边界的一种方法。该方法一般被用来测量一些决策部门的生产效率。 DEA是一个线性规…

http503错误是什么原因

HTTP503错误在站长圈很经常遇到&#xff0c;很多网站站长经常遇到的HTTP503错误经常会不知道怎么去解决它。今天我们就来针对HTTP503错误问题展开说说。HTTP503错误是指服务器暂时无法处理客户端的请求&#xff0c;常常出现在服务器超负荷或维护期间。在这种情况下&#xff0c;…

REVIT二次开发万能刷

将这两个参数赋予其他参数 步骤2 将来做个可以调控的版本 using System; using System.Collections.Generic; using System.Lin