数学建模--Radar图绘制

1.Radar图简介

   最近在数学建模中碰见需要绘制Radar图(雷达图)的情况来具体分析样本的各个特征之间的得分与优劣关系,这样的情况比较符合雷达图的使用场景,一般来说,雷达图适用于展示多个维度的数据,并在一个平面上直观地呈现出不同维度的变化趋势,比较适用的场合如下:

    ∙ \bullet 综合评价: 雷达图是理想的工具,能够直观展示多个评价指标的得分,为综合评估提供清晰的整体表现概览。

    ∙ \bullet SWOT分析: 通过SWOT分析,雷达图展示了组织或项目在各方面的优势、劣势、机会和威胁,为战略决策提供直观支持。

    ∙ \bullet 个体特征对比: 通过雷达图,我们可以比较不同个体在各个特征上的差异,无论是个人技能评估还是产品性能对比,一目了然。

2.Radar图绘图案例:单样本图绘制

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import warnings
warnings.filterwarnings("ignore")
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['font.serif'] = 'Times New Roman'
#需要评价的特征名称
labels = np.array(['Comprehensive', 'Education', 'Professional Title', 'Teaching', 'Training', 'Research'])
labels = np.array(['A1', 'A2', 'A3', 'A4', 'A5', 'A6'])
#需要评价的特征的数量
nAttr = len(labels)
#数据/得分情况
data = np.array([8, 5, 8, 9, 8, 6])
#计算角度360/n
angels = np.linspace(0, 2*np.pi, nAttr, endpoint=False)
#创建数据闭环效果
data = np.concatenate((data, [data[0]]))  
angels = np.concatenate((angels, [angels[0]]))


#可视化绘图
fig = plt.figure(facecolor='white')
ax = plt.subplot(111, polar=True)

ax.set_ylim(0, 10)
#绘制线条
ax.plot(angels, data, 'o-', color='lightgreen', linewidth=2, label='A Personal Characteristics')

#添加数值标签(选写)
for i in range(len(angels)-1):
    ax.text(angels[i], data[i]+0.8, str(data[i]), color='b')

#填充区域
ax.fill(angels, data, facecolor='red', alpha=0.25)
ax.set_xticks(angels[:-1])
ax.set_xticklabels(labels, ha='center')
ax.set_title('Academic Scholar Research Feature Radar Chart', va='bottom', fontweight='bold')
#设置一些图例要求
plt.grid(True)
#plt.legend(loc='upper right')
#plt.legend(loc='upper right', bbox_to_anchor=(1.2, 0.55), bbox_transform=plt.gcf().transFigure)
plt.savefig('雷达图1.jpg')
plt.show()

在这里插入图片描述

3.Radar图绘图案例:多样本图绘制

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import warnings

warnings.filterwarnings("ignore")

matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['font.serif'] = 'Times New Roman'
matplotlib.rcParams['font.style'] = 'italic' 

radar_labels = np.array(['A1', 'A2', 'A3',
                         'A4', 'A5', 'A6'])
nAttr = 6

data = np.array([[0.40, 0.32, 0.35, 0.30, 0.30, 0.88],
                 [0.85, 0.35, 0.30, 0.40, 0.40, 0.30],
                 [0.43, 0.89, 0.30, 0.28, 0.22, 0.30],
                 [0.30, 0.25, 0.48, 0.85, 0.45, 0.40],
                 [0.20, 0.38, 0.87, 0.45, 0.32, 0.28],
                 [0.34, 0.31, 0.38, 0.40, 0.92, 0.28]])
data_labels = ('Engineer', 'Laboratory Technician', 'Artist', 'Salesperson', 'Social Worker', 'Clerk')

angles = np.linspace(0, 2*np.pi, nAttr, endpoint=False)

data = np.concatenate((data, [data[0]]))
angles = np.concatenate((angles, [angles[0]]))

fig = plt.figure(facecolor='white')
ax = plt.subplot(111, polar=True)

ax.plot(angles, data, 'o-', linewidth=1, alpha=0.2)
ax.fill(angles, data, alpha=0.3)

ax.set_thetagrids(np.degrees(angles[0:6]), labels=radar_labels)
ax.set_title('Holland Personality Analysis', va='bottom', fontweight='bold', size=16)

legend = plt.legend(data_labels, loc=(1.1, 0.55), labelspacing=0.1, edgecolor='k', fontsize=10)

plt.grid(True)
plt.savefig('雷达图2.jpg')
plt.show()

在这里插入图片描述

4.Radar图绘图案例:Matplotlib标准绘图案例

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D


def radar_factory(num_vars, frame='circle'):
    """
    Create a radar chart with `num_vars` axes.

    This function creates a RadarAxes projection and registers it.

    Parameters
    ----------
    num_vars : int
        Number of variables for radar chart.
    frame : {'circle', 'polygon'}
        Shape of frame surrounding axes.

    """
    # calculate evenly-spaced axis angles
    theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)

    class RadarTransform(PolarAxes.PolarTransform):

        def transform_path_non_affine(self, path):
            # Paths with non-unit interpolation steps correspond to gridlines,
            # in which case we force interpolation (to defeat PolarTransform's
            # autoconversion to circular arcs).
            if path._interpolation_steps > 1:
                path = path.interpolated(num_vars)
            return Path(self.transform(path.vertices), path.codes)

    class RadarAxes(PolarAxes):

        name = 'radar'
        PolarTransform = RadarTransform

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            # rotate plot such that the first axis is at the top
            self.set_theta_zero_location('N')

        def fill(self, *args, closed=True, **kwargs):
            """Override fill so that line is closed by default"""
            return super().fill(closed=closed, *args, **kwargs)

        def plot(self, *args, **kwargs):
            """Override plot so that line is closed by default"""
            lines = super().plot(*args, **kwargs)
            for line in lines:
                self._close_line(line)

        def _close_line(self, line):
            x, y = line.get_data()
            # FIXME: markers at x[0], y[0] get doubled-up
            if x[0] != x[-1]:
                x = np.append(x, x[0])
                y = np.append(y, y[0])
                line.set_data(x, y)

        def set_varlabels(self, labels):
            self.set_thetagrids(np.degrees(theta), labels)

        def _gen_axes_patch(self):
            # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
            # in axes coordinates.
            if frame == 'circle':
                return Circle((0.5, 0.5), 0.5)
            elif frame == 'polygon':
                return RegularPolygon((0.5, 0.5), num_vars,
                                      radius=.5, edgecolor="k")
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

        def _gen_axes_spines(self):
            if frame == 'circle':
                return super()._gen_axes_spines()
            elif frame == 'polygon':
                # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
                spine = Spine(axes=self,
                              spine_type='circle',
                              path=Path.unit_regular_polygon(num_vars))
                # unit_regular_polygon gives a polygon of radius 1 centered at
                # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
                # 0.5) in axes coordinates.
                spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
                                    + self.transAxes)
                return {'polar': spine}
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

    register_projection(RadarAxes)
    return theta


def example_data():
    # The following data is from the Denver Aerosol Sources and Health study.
    # See doi:10.1016/j.atmosenv.2008.12.017
    #
    # The data are pollution source profile estimates for five modeled
    # pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
    # species. The radar charts are experimented with here to see if we can
    # nicely visualize how the modeled source profiles change across four
    # scenarios:
    #  1) No gas-phase species present, just seven particulate counts on
    #     Sulfate
    #     Nitrate
    #     Elemental Carbon (EC)
    #     Organic Carbon fraction 1 (OC)
    #     Organic Carbon fraction 2 (OC2)
    #     Organic Carbon fraction 3 (OC3)
    #     Pyrolyzed Organic Carbon (OP)
    #  2)Inclusion of gas-phase specie carbon monoxide (CO)
    #  3)Inclusion of gas-phase specie ozone (O3).
    #  4)Inclusion of both gas-phase species is present...
    data = [
        ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
        ('Basecase', [
            [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
            [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
            [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
            [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
            [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
        ('With CO', [
            [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
            [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
            [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
            [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
            [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
        ('With O3', [
            [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
            [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
            [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
            [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
            [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
        ('CO & O3', [
            [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
            [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
            [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
            [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
            [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
    ]
    return data


if __name__ == '__main__':
    N = 9
    theta = radar_factory(N, frame='polygon')

    data = example_data()
    spoke_labels = data.pop(0)

    fig, axs = plt.subplots(figsize=(9, 9), nrows=2, ncols=2,
                            subplot_kw=dict(projection='radar'))
    fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)

    colors = ['b', 'r', 'g', 'm', 'y']
    # Plot the four cases from the example data on separate axes
    for ax, (title, case_data) in zip(axs.flat, data):
        ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
        ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
                     horizontalalignment='center', verticalalignment='center')
        for d, color in zip(case_data, colors):
            ax.plot(theta, d, color=color)
            ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_')
        ax.set_varlabels(spoke_labels)

    # add legend relative to top-left plot
    labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
    legend = axs[0, 0].legend(labels, loc=(0.98, -0.2),
                              labelspacing=0.1, fontsize=12,edgecolor='k')

    fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
             horizontalalignment='center', color='black', weight='bold',
             size=16)
    plt.savefig('雷达图3.jpg')  
    plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341436.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端每日一练 “文字穿透效果”

前言 我都不知道用什么样的词来描述这个效果&#xff0c;反正你看吧&#xff01;这个效果看上去很简单&#xff0c;但是一旦实现起来你会发现也不复杂&#xff0c;废话不多说直接上源码&#xff0c;喜欢的点个关注、留个免费的 html源码 <!DOCTYPE html> <html>&…

13.8.1异步、异步、异步 Page720~721

#include <iostream> #include <thread> #include <future>using namespace std;///定时炸弹第一波 void sync_sleep(int s) {cout << "sync_sleep----不使用异步" << endl;///启动定时this_thread::sleep_for(chrono::seconds(s)); /…

《WebKit 技术内幕》学习之十(2): 插件与JavaScript扩展

2 Chromium PPAPI插件 2.1 原理 插件其实是一种统称&#xff0c;表示一些动态库&#xff0c;这些动态库根据定义的一些标准接口可以跟浏览器进行交互&#xff0c;至于这个标准接口是什么都可以&#xff0c;重要的是大家都遵循它们&#xff0c;NPAPI接口标准只是其中的一种&a…

FastDFS分布式文件存储

为什么会有分布式文件系统&#xff1f; 分布式文件系统是面对互联网的需求而产生。因为互联网时代要对海量数据进行存储。很显然靠简单的增加硬盘个数已经满足不了我们的要求。因为硬盘传输速度有限但是数据在急剧增长&#xff0c;另外我们还要要做好数据备份、数据安全等。采用…

初识k8s(概述、原理、安装)

文章目录 概述由来主要功能 K8S架构架构图组件说明ClusterMasterNodekubectl 组件处理流程 K8S概念组成PodPod控制器ReplicationController&#xff08;副本控制器&#xff09;ReplicaSet &#xff08;副本集&#xff09;DeploymentStatefulSet &#xff08;有状态副本集&#…

6 时间序列(不同位置的装置如何建模): GRU+Embedding

很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息&#xff0c;比如不同位置的时间序列信息&#xff0c;风力发电、充电桩用电。经常会遇到该如此场景&#xff0c;对所有数据做统一处理喂给模型&#xff0c;模型很难学到区分信息&#xff0c;因此设计如果对不同位置的…

【Linux】常见指令(一)

前言: Linux有许多的指令&#xff0c;通过学习这些指令&#xff0c;可以对目录及文件进行操作。 文章目录 一、基础指令1. ls—列出目录内容2. pwd—显示当前目录3. cd—切换目录重新认识指令4. touch—创建文件等5. mkdir—创建目录6. rmdir指令 && rm 指令7. man—显…

linux源码编译安装llvm

目录 1 建立文件夹llvm 2 下载源码到llvm文件夹 3 解压上述文件 4 将解压后的3个文件夹改名&#xff0c;并移动到llvm-9.0.0.src中&#xff1a; 5 在llvm文件夹内建立build文件夹&#xff0c;并进入该文件夹&#xff1a; 6 执行cmake命令 7 make 8 安装 9 安装成功后…

[晓理紫]每日论文分享(有中文摘要,源码或项目地址)--机器人、强化学习

专属领域论文订阅 VX 扫吗关注{晓理紫|小李子}&#xff0c;每日更新论文&#xff0c;如感兴趣&#xff0c;请转发给有需要的同学&#xff0c;谢谢支持 如果你感觉对你有帮助可以扫吗关注&#xff0c;每日准时为你推送最新论文 分类: 大语言模型LLM视觉模型VLM扩散模型视觉导航…

Git Docker 学习笔记

注意&#xff1a;该文章摘抄之百度&#xff0c;仅当做学习笔记供小白使用&#xff0c;若侵权请联系删除&#xff01; 目录 列举工作中常用的几个git命令&#xff1f; 提交时发生冲突&#xff0c;你能解释冲突是如何产生的吗&#xff1f;你是如何解决的&#xff1f; git的4个…

安全通信网络

1.网络架构 1&#xff09;应保证网络设备的业务处理能力满足业务高峰期需要。 设备CPU和内存使用率的峰值不大于设备处理能力的70%。 在有监控环境的条件下&#xff0c;应通过监控平台查看主要设备在业务高峰期的资源&#xff08;CPU、内存等&#xff09;使用 情况&#xff…

双数据源同步的思考

双数据源同步的思考 目录概述需求&#xff1a; 设计思路实现思路分析1.简单实现 2.Spring mybatis 技术 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result,wa…

geemap学习笔记053:纹理特征

前言 纹理特征通常描述了遥感影像中像素之间的空间关系和变化&#xff0c;对于地物分类、目标检测以及图像分割等遥感应用非常有价值。本节将会介绍Earth Engine中提供的一些纹理特征计算方法&#xff0c;包括熵和灰度共生矩阵。 1 导入库并显示数据 import ee import geema…

.NET发展如火如荼,这回.Net 8的野心确实不小

随着三天.NET Conf 2023的会议结束了&#xff0c;.Net 8正式发布了。 .Net 8是官方号称有史以来性能最快的一个版本了。 .Net 8 增加了数以千计的性能、稳定性和安全性改进&#xff0c;以及平台和工具增强功能&#xff0c;有助于提高开发人员的工作效率和创新速度。 反正就是快…

【Leetcode 965.】判断单值二叉树

单值二叉树&#xff1a; 示例一&#xff1a; 示例二&#xff1a; 代码&#xff1a; bool isUnivalTree(struct TreeNode* root) {if(rootNULL)return true;if(root->left&&root->left->val!root->val)return false;if(root->right&&root-&…

【2024系统架构设计】案例分析- 1软件架构设计

目录 一 基础知识 二 历年真题 案例分析前文回顾: 【2024系统架构设计】 系统架构设计师第二版-大数据架构理论设计与实践 【2024系统架构设计】 系统架构设计师第二版-云原生架构设计理论与实践

opencv#30 线性滤波

均值滤波原理 均值滤波步骤 Step1:求和。 Step2:计算平均值。 所谓均值滤波&#xff0c;就是求平均值的意思。我们假设在一个3*3的范围内有一个图像&#xff0c;其中这个图像每一个像素可能含有噪声&#xff0c;也可能不含噪声&#xff0c;我们是不知道的&#xff0c;因此通…

力扣1143. 最长公共子序列(动态规划)

Problem: 1143. 最长公共子序列 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 我们先假设已经将两个字符串转换为两个char类型的数组&#xff08;t1,t2&#xff09;便于比较 1.如果t1[i] t2[j],有三种决策&#xff1a;&#xff08;i1&#xff0c;j1&#xff09;&a…

【江科大】STM32:TIM输入捕获(理论部分)

文章目录 IC&#xff08;Input Capture&#xff09;输入捕获PWM频率 知识点补充1. 滤波器的工作原理&#xff1a;2. 边沿检测器&#xff1a;自动化清零CNT输入捕获的基本结构PWMI基本结构滤波器和分频器的区别误差分析pwm.cmain.cIC.c PWM模式测频率和占空比 IC&#xff08;Inp…

架构篇08:架构设计三原则

文章目录 合适原则简单原则演化原则小结 成为架构师是每个程序员的梦想&#xff0c;但并不意味着把编程做好就能够自然而然地成为一个架构师&#xff0c;优秀程序员和架构师之间还有一个明显的鸿沟需要跨越&#xff0c;这个鸿沟就是“不确定性”。 对于编程来说&#xff0c;本…