【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation

1.介绍

Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
Swin-Unet:用于医学图像分割的类Unet纯Transformer

2022年发表在 Computer Vision – ECCV 2022 Workshops
Paper Code

2.摘要

在过去的几年里,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的成就。特别是基于U型结构和跳跃连接的深度神经网络,已经广泛应用于各种医学图像任务中。然而,尽管CNN取得了优异的性能,但由于卷积运算的局部性,它不能很好地学习全局和远程语义信息交互。在本文中,我们提出了Swin-Unet,这是一个Unet-like纯Transformer医学图像分割。标记化的图像块被馈送到基于变换器的U形编码器-解码器架构中,具有用于局部全局语义特征学习的跳过连接。具体来说,我们使用分层Swin Transformer与移位窗口作为编码器来提取上下文特征。并设计了一个基于对称Swin变换的解码器,该解码器具有补丁扩展层,用于执行上采样操作,以恢复特征图的空间分辨率。在对输入和输出进行4倍直接下采样和上采样的情况下,对多器官和心脏分割任务的实验表明,纯基于transformer的U形Encoder-Decoder网络的性能优于采用全卷积或transformer和卷积相结合的方法。代码和训练模型将在https://github.com/HuCaoFighting/Swin-Unet上公开。

Keywords:U-Net、Swin Transformer、多器官分割

3.Introduction

现有的医学图像分割方法主要依赖于具有U形结构的全卷积神经网络(FCNN)。典型的U形网络U-Net 由具有跳跃连接的对称编码器-解码器组成。在编码器中,使用一系列卷积层和连续下采样层来提取具有大感受野的深度特征。然后,解码器将提取的深度特征上采样到输入分辨率,进行像素级语义预测,并将来自编码器的不同尺度的高分辨率特征通过跳跃连接进行融合,以减轻下采样造成的空间信息丢失。凭借如此优雅的结构设计,U-Net在各种医学成像应用中取得了巨大的成功。遵循这一技术路线,已经开发了许多算法,如3D U-Net,Res-UNet,U-Net++和UNet 3 +,用于各种医学成像模式的图像和体积分割。这些基于模糊神经网络的方法在心脏分割、器官分割和病变分割中的出色表现证明了CNN具有很强的学习判别特征的能力。由于卷积运算的内在局部性,基于CNN的方法很难学习显式的全局和长距离语义信息交互。一些研究试图通过使用atrous卷积层,自我注意机制和图像金字塔来解决这个问题。然而,这些方法在建模远程依赖关系时仍然存在局限性。最近,受Transformer在自然语言处理(NLP)领域的巨大成功的启发,研究人员试图将Transformer引入视觉领域,出现视觉Transformer(ViT)来执行图像识别任务。以具有位置嵌入的2D图像块作为输入并在大型数据集上进行预训练,ViT实现了与基于CNN的方法相当的性能。此外,还有人提出了数据高效图像Transformer(DeiT),这表明Transformer可以在中等大小的数据集上训练,并且可以通过将其与蒸馏方法相结合来获得更鲁棒的Transformer。后续开发了分层Swin Transformer。以Swin Transformer作为视觉骨干,在图像分类、对象检测和语义分割方面实现了最先进的性能。ViT、DeiT和Swin Transformer在图像识别任务中的成功证明了Transformer在视觉领域的应用潜力。受Swin Transformer成功的启发,本文提出Swin-Unet来利用Transformer的功能,在这项工作中进行2D医学图像分割。Swin-Unet是第一个纯基于Transformer的U形架构,由编码器,瓶颈,解码器和跳过连接组成。编码器、瓶颈和解码器都是基于Swin Transformer块构建的。将输入的医学图像分割成不重叠的图像补丁块,每个补丁都被视为一个令牌,并被馈送到基于transformer的编码器中,以学习深度特征表示。提取的上下文特征由解码器通过补丁扩展层进行上采样,并通过跳过连接与来自编码器的多尺度特征融合,以恢复特征图的空间分辨率并进一步执行分割预测。在多器官和心脏分割数据集上的实验表明,该方法具有良好的分割精度和鲁棒的泛化能力。

具体而言,本文的工作可以概括为:(1)基于Swin Transformer模块,构建了一个具有跳跃连接的对称编解码器结构。在编码器中,实现了从局部到全局的自注意力;在解码器中,将全局特征上采样到输入分辨率,以进行相应的像素级分割预测。(2)在不使用卷积或插值操作的情况下,开发了一个补丁扩展层来实现上采样和特征维数的增加。(3)实验中发现跳跃连接对Transformer也有效,因此最终构造了一种基于transformer的U型跳跃连接编解码器结构Swin-Unet。

4.网络结构详解

在这里插入图片描述

拟议的Swin-Unet的总体架构如图所示。Swin-Unet由编码器、瓶颈、解码器和跳跃连接组成。Swin-Unet的基本单元是Swin Transformer块。

对于编码器,首先为了将输入转换为序列嵌入,图像经过Patch partition被分割成具有4 × 4的块大小的非重叠块,这样每个块的特征维数变为4 × 4 × 3 = 48。此外,线性嵌入层Linear embedding被应用于将特征维度投影到任意维度(表示为C)。然后变换后的patch tokens(即图像补丁块)通过几个Swin Transformer块和补丁合并层patch merging来生成分层特征表示。其中,补丁合并层负责下采样和增加维度,Swin Transformer块负责特征表示学习。

受U-Net 的启发,本文是一个基于对称transformer的解码器。解码器由Swin Transformer模块和补丁扩展层patch expending组成。提取的上下文特征通过跳跃连接与来自编码器的多尺度特征融合,以补充由下采样引起的空间信息的损失。与补丁合并层相比,补丁扩展层被专门设计用于执行上采样。补丁扩展层将相邻维度的特征图重塑为具有2倍分辨率上采样的大特征图。最后,利用最后一个补丁扩展层进行4倍上采样,将特征图的分辨率恢复到输入分辨率(W×H),然后对这些上采样后的特征应用线性投影层,输出像素级分割预测。

Swin Transformer块

在这里插入图片描述

与传统的多头自注意(MSA)模块不同,Swin Transformer块是基于移位窗口构建的。在上图中给出了两个连续的swin Transformer块。每个Swin Transformer模块由LayerNorm(LN)层、多头自注意模块、残差连接和具有GELU非线性的2层MLP组成。基于窗口的多头自注意(W-MSA)模块和基于移位窗口的多头自注意(SW-MSA)模块分别应用于两个连续的Transformer块。基于这样的窗口划分机制,连续的swin Transformer块可以被公式化为:
在这里插入图片描述
其中,zl分别表示第l个块的(S)W-MSA模块和MLP模块的输出。
自注意力的计算如下:
在这里插入图片描述

其中 Q , K , V ∈ R M 2 × d Q,K,V ∈ R^{M^2 ×d} QKVRM2×d 表示查询、键和值。 M 2 M^2 M2和d分别表示窗口中补丁的数量以及查询或键的维度。并且,B中的值取自偏置矩阵 B ′ ∈ R ( 2 M − 1 ) × ( 2 M + 1 ) B' ∈ R^{(2 M −1)×(2 M +1)} BR(2M1)×(2M+1)

编码器

在编码器中,将分辨率为H/4 ×W/4的C维标记化输入送入两个连续的Swin Transformer块进行表征学习,特征维数和分辨率保持不变。同时,补丁合并层将减少token的数量(2倍下采样),并将特征维度增加到原始维度的2倍。此过程将在编码器中重复三次。

Patch merging:输入patch被分为4部分,并通过Patch merging连接在一起。通过这种处理,特征分辨率将被下采样2倍。而且,由于连接操作导致特征维度增加4倍,因此在连接的特征上应用线性层以将特征维度统一到2倍原始维度。

Bottleneck 瓶颈

由于Transformer太深而无法收敛,因此仅使用两个连续的Swin Transformer块来构建瓶颈以学习深度特征表示。在瓶颈区域,特征尺寸和分辨率保持不变。(即在底端不改变尺寸与分辨率)

解码器

与编码器相对应,基于Swin Transformer模块构建了对称解码器。为此,与编码器中使用的补丁合并层相比,在解码器中使用补丁扩展层来对提取的深度特征进行上采样。补丁扩展层将相邻维度的特征图重塑为更高分辨率的特征图(2倍上采样),并相应地将特征维度减少到原始维度的一半。贴片展开层:以第一个面片扩展层为例,在上采样之前,在输入特征(W/32 × H/32 × 8C)上应用线性层,以将特征维度增加到原始维度(W/32 × H/32 × 16C)的2倍。然后,利用重排操作将输入特征的分辨率扩展到2×输入分辨率,将特征维数降低到输入维数的四分之一(W/32 × H/32 × 16C→ W/16 × H/16 × 4C)。

跳跃连接

与U-Net类似,跳跃连接用于将来自编码器的多尺度特征与上采样特征融合。将浅层特征和深层特征连接在一起,以减少由下采样引起的空间信息损失。接着是线性层,级联特征的维度保持与上采样特征的维度相同。

5.实验与结果

Swin-Unet基于Python 3.6和Pytorch 1.7.0实现。对于所有训练案例,使用翻转和旋转等数据增强来增加数据多样性。输入图像大小和补丁大小分别设置为224×224和4。在具有32 GB内存的Nvidia V100 GPU上训练模型。在ImageNet上预训练的权重用于初始化模型参数。在训练期间,批量大小为24,并且使用动量为0.9且权重衰减为1 e-4的流行SGD优化器来优化我们的反向传播模型。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/341060.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java程序cpu飙高如何排查

一、使用传统jstack手法来排查 如何使用原生top命令、jstack命令来做定位具体代码的位置处理 1、简单步骤有下面几步 执行top命令&#xff0c;查看CPU占用情况&#xff0c;找到进程的pid(12002)使用 top -Hp <pid> 命令&#xff08;为Java进程的id号&#xff09;查看该…

System.Data.SqlClient.SqlException:“在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误

目录 背景: 过程: SQL Express的认识: 背景: 正在运行程序的时候&#xff0c;我遇到一个错误提示&#xff0c;错误信息如下&#xff0c;当我将错误信息仔细阅读了一番&#xff0c;信息提示的很明显&#xff0c;错误出现的来源就是连接数据库代码这块string connStr "s…

【教程】iOS Swift应用加固

&#x1f512; 保护您的iOS应用免受恶意攻击&#xff01;在本篇博客中&#xff0c;我们将介绍如何使用HTTPCORE DES加密来加固您的应用程序&#xff0c;并优化其安全性。通过以下步骤&#xff0c;您可以确保您的应用在运行过程中不会遭受数据泄露和未授权访问的风险。 摘要 …

网络防御保护——1.网络安全概述

一.网络安全概念 通信保密阶段 --- 计算机安全阶段 --- 信息系统安全 --- 网络空间安全 APT攻击 --- 高级持续性威胁 网络安全(网络空间安全--Cyberspace)从其本质上讲就是网络上的信息安全&#xff0c;指网络系统的硬件、软件及数据受到保护。不遭受破坏、更改、泄露&#xf…

[pytorch入门] 4. torchvision中数据集的使用

介绍 文档 可以去看官方文档 可以在里面找到一些数据集的使用 CIFAR10 import torchvision from torch.utils.tensorboard import SummaryWriterdataset_transform torchvision.transforms.Compose([torchvision.transforms.ToTensor(), ])train_set torchvision.datas…

opencv#27模板匹配

图像模板匹配原理 例如给定一张图片&#xff0c;如上图大矩阵所示&#xff0c;然后给定一张模板图像&#xff0c;如上图小矩阵。 我们在大图像中去搜索与小图像中相同的部分或者是最为相似的内容。比如我们在图像中以灰色区域给出一个与模板图像尺寸大小一致的区域&#xff0c;…

3DMAX初级小白班第一课:菜单栏介绍

基本介绍 这里不可能一个一个选项全部教给大家&#xff08;毕竟之后靠实操慢慢就记住了&#xff09;&#xff0c;只说一些相对需要注意的设置。 自定义-热键编辑器-热键设置 这里有你所需要的全部快捷键 自定义-自定义UI启动布局 将UI布局还原到启动的位置 自定义-通用单…

成功解决java.nio.charset.MalformedInputException: Input length = 1

项目启动时报错如下 Connected to the target VM, address: 127.0.0.1:5309, transport: socket 18:01:22.607 [main] ERROR o.s.b.SpringApplication - [reportFailure,843] - Application run failed org.yaml.snakeyaml.error.YAMLException: java.nio.charset.MalformedIn…

竞赛保研 机器视觉目标检测 - opencv 深度学习

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…

pod 报错Failed to connect to github.com port 443

pod 报错Failed to connect to github.com port 443 1、排查代理问题1.1、查找网络代理1.2、修改 Git 的代理 2、排查DNS解析问题2.1、查找 ip地址2.2、修改 host 文件 1、排查代理问题 1.1、查找网络代理 打开 设置 --> 网络与Internet --> 查找代理 1.2、修改 Git …

《堆排序》与《Top—k》

目录 ​编辑 前言&#xff1a; 关于《堆排序》&#xff1a; 第一步&#xff1a;建堆 第二步&#xff1a;排序 《Top—K问题》 关于Top—k问题&#xff1a; 前言&#xff1a; 我们在前面的blog中&#xff0c;对于《堆》已经有了初步的概念&#xff0c;那么接下来我们可以…

探索设计模式的魅力:一次设计,多次利用,深入理解原型模式的设计艺术

原型模式是一种设计模式&#xff0c;属于创建型模式的一种&#xff0c;它用于创建重复的对象&#xff0c;同时又能保持性能。在原型模式中&#xff0c;通过复制现有对象的原型来创建新对象&#xff0c;而不是通过实例化类来创建对象。这样做可以避免耗费过多的资源开销&#xf…

第二节 K8S 的架构

第二节 K8S 的架构 K8S 架构图如下: 官方文档: https://kubernetes.io/docs/concepts/architecture/ kube-api-server 是集群的核心&#xff0c; 是k8s中最重要的组件&#xff0c; 因为它是实现声明式api的关键, 整个集群的入口,所有请求都要经过它, api接口服务. kubernetes…

Navicat使用HTTP通道连接远程服务器的SQLite文件

拷贝ntunnel_sqlite.php文件到Linux机器中 ntunnel_sqlite.php文件位置&#xff1a; 在Navicat安装位置中可以找到ntunnel_sqlite.php文件&#xff0c;其他两个类似文件是支持MySQL和pgsql的

【开源】基于JAVA+Vue+SpringBoot的高校宿舍调配管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能需求2.1 学生端2.2 宿管2.3 老师端 三、系统展示四、核心代码4.1 查询单条个人习惯4.2 查询我的室友4.3 查询宿舍4.4 查询指定性别全部宿舍4.5 初次分配宿舍 五、免责说明 一、摘要 1.1 项目介绍 基于JAVAVueSpringBootMySQL的…

k8s之包管理器Helm

helm的作用就是通过打包的方式&#xff0c;把deployment service ingress这些打包在一块&#xff0c;一键式的部署服务。类似yum官方提供的一个类似与安装仓库的功能&#xff0c;可以实现一键化部署应用。 Helm的三个重要概念 ●Chart&#xff1a;Helm 的软件包&#xff0c;采…

从物联网看智慧文旅的未来:技术与实践的完美结合,重塑旅游体验的新篇章

一、物联网技术&#xff1a;智慧文旅的基石 随着科技的飞速发展&#xff0c;物联网技术已经深入到我们生活的方方面面&#xff0c;尤其在智慧文旅领域&#xff0c;物联网技术更是起到了不可或缺的作用。它如同智慧文旅的基石&#xff0c;为旅游行业带来了前所未有的创新和变革…

node.js(express.js)+mysql实现新增文章分类功能

表单验证 // 导入定义验证规则的包 // const joi require("hapi/joi"); const joi require("joi"); /*** string()值必须是字符串* alphanum()值只能包含a-zA-ZO-9的字符串* min(length) 最小长度* max(length) 大长度* required() 值是必填项&#xff0…

VSCode插件 —— Cody AI (免费AI助手!)

之前介绍过一款 阿里云免费的AI开发工具——通义灵码 TONGYI Lingma 本文再推荐一个可以极大提高开发前端开发效率的工具 —— Cody AI &#xff08;Sourcegraph&#xff09;&#xff0c;同样是免费的&#xff01; 不过&#xff0c;使用Cody AI需要有github 或 Google 、 git…

cadence中统计高电平波形的两种方法(transient measurement和value cross函数)

cadence中统计高电平波形的两种方法&#xff08;transient measurement和value cross函数&#xff09; 一、measurement——transient measurement 如图&#xff0c;为比较器的输出 选择想要查看的波形&#xff0c;右侧会出现对此波形上升沿下降沿的统计结果&#xff0c;如图…