数学建模--PageRank算法的Python实现

1. P a g e R a n k PageRank PageRank算法背景

   P a g e R a n k PageRank PageRank 算法是现代数据科学中用于图链接分析的经典方法,最初由 L a r r y Larry Larry P a g e Page Page S e r g e y Sergey Sergey B r i n Brin Brin 在1996年提出。两位斯坦福大学研究生认为互联网上的链接结构能够反映页面的重要性,与当时基于关键词的搜索方法形成对比。这一独特观点不仅赢得了学术界的认可,也为后来创建的 G o o g l e Google Google搜索引擎奠定了基础。

   P a g e R a n k PageRank PageRank的核心思想基于有向图上的随机游走模型,即一阶马尔可夫链。描述了随机游走者如何沿着图的边随机移动,最终收敛到一个平稳分布。在这分布中,每个节点被访问的概率即为其 P a g e R a n k PageRank PageRank 值,代表节点的重要性。 P a g e R a n k PageRank PageRank是递归定义的,计算需要迭代方法,因为一个页面的值部分取决于链接到它的其他页面的值。尽管最初设计用于互联网页面,但 P a g e R a n k PageRank PageRank 已广泛应用于社会影响力、文本摘要等多个领域,展示了其在图数据上的强大实用性。

2. P a g e R a n k PageRank PageRank算法基础

2.1. P a g e R a n k PageRank PageRank问题描述

   P a g e R a n k PageRank PageRank 算法是互联网早期用于评估网页重要性的方法。其核心概念是将互联网视为一个有向图,其中每个网页是一个节点,超链接是有向边。通过建立一阶马尔可夫链的随机游走模型,模拟虚拟网页浏览者随机跳转,最终形成一个平稳分布。每个网页的 P a g e R a n k PageRank PageRank 值代表其在这个分布中的概率,即重要性。

   举例说明,如下图所示,假设有三个网页 A A A B B B C C C A A A 链接到 B B B C C C B B B 只链接到 C C C,而 C C C 只链接到 A A A。随机游走模型中,从 A A A 出发的浏览者有 50% 的概率跳转到 B B B C C C;从 B B B 出发的浏览者会 100% 跳转到 C C C;从 C C C 出发的浏览者会 100% 跳转到 A A A。经过多次迭代, C C C P a g e R a n k PageRank PageRank 值可能比 A A A B B B 高,因为它接收到了 A A A B B B 的流量。
在这里插入图片描述
   P a g e R a n k PageRank PageRank算法直观上认为,一个网页被指向的超链接越多,随机跳转到该网页的概率越高,其 P a g e R a n k PageRank PageRank值越高,表示网页越重要。反之,指向该网页的 P a g e R a n k PageRank PageRank值越高,该网页 P a g e R a n k PageRank PageRank值也越高,表明其重要性增加。PageRank值依赖于网络拓扑结构,一旦确定, P a g e R a n k PageRank PageRank值也确定。计算通过迭代,在互联网有向图上进行。初始假设一个分布,通过迭代计算所有网页的 P a g e R a n k PageRank PageRank值直至收敛。有向图和随机游走模型定义了 P a g e R a n k PageRank PageRank的基本原理,而基本定义对应于理想情况,一般定义则考虑实际网络中的复杂性。

2.2.有向图模型

  有向图( D i r e c t e d Directed Directed G r a p h Graph Graph)是图论的基本概念,由节点和有向边组成。每条边有起始节点和终止节点,表示方向性。在互联网中,每个网页可看作有向图中的一个节点,超链接则表示有向边。

  以三个网页 A、B 和 C 为例,网页 A 包含指向 B 和 C 的链接,B 包含指向 C 的链接,而 C 包含指向 A 的链接。这构成有向图的边集合,即 E={(A,B),(A,C),(B,C),(C,A)}。

  有向图中的周期性结构可通过路径的长度判断,例如,从节点 A 出发返回 A 需要经过长度为 3 的倍数的路径。这样的有向图被称为周期性图。
在这里插入图片描述

2.3.随机游走模型

  给定一个含有 n n n个结点的有向图,在有向图上定义随机游走( R a n d o m Random Random W a l k Walk Walk)模型,即一阶马尔可夫链,其中结点表示状态,有向边表示状态之间的转移,假设从一个结点到通过有向边相连的所有结点的转移概率相等。具体地,转移矩阵是一个 n n n阶矩阵。
M = [ m i j ] n × n M=[m_{ij}]_{n\times n} M=[mij]n×n

  第 i i i行第 j j j列的元素 m i j m_{ij} mij取值规则如下:如果结点 j j j有有 k k k个有向边连出,并且结点 i i i是其连出的一个结点则 m i j = 1 k m_{ij}=\frac{1}{k} mij=k1,否则 m i j = 0 m_{ij}=0 mij=0.
注意转移矩阵 M M M具有如下约束条件:
m i j ≥ 0 m_{ij}\geq0 mij0
∑ i = 1 n m i j = 1 \sum_{i=1}^nm_{ij}=1 i=1nmij=1
  即每个元素非负,每列元素之和为1即矩阵 M M M为随机矩阵( s t o c h a s t i c stochastic stochastic m a t r i x matrix matrix)。
  在有向图上的随机游走形成马尔可夫链。也就是说,随机游走者每经过一个单位时间转移一个状态。如果当前时刻在第 i i i 个结点(状态),那么下一个时刻在第 j j j 个结点(状态)的概率是 P i j P_{ij} Pij。这一概率只依赖于当前的状态,与过去无关,具有马尔可夫性。

3. P a g e R a n k PageRank PageRank算法定义

3.1. P a g e R a n k PageRank PageRank算法基本定义

  给定一个包含 n n n 个结点的强连通且非周期性的有向图,在其基础上定义随机游走模型。假设转移矩阵为 M M M,在时刻 0 , 1 , 2 , … , t , … 0, 1, 2, \dots, t, \dots 0,1,2,,t,,访问各个结点的概率分布为 p 0 , p 1 , p 2 , … , p t , … \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_t, \dots p0,p1,p2,,pt,。其中, v 0 \mathbf{v}_0 v0 是初始概率分布。

p 0 = v 0 , p t + 1 = p t ⋅ M \mathbf{p}_0 = \mathbf{v}_0, \quad \mathbf{p}_{t+1} = \mathbf{p}_t \cdot M p0=v0,pt+1=ptM

  则极限为:
lim ⁡ t → ∞ M t R 0 = R \lim_{t\to\infty}M^tR_0=R tlimMtR0=R
  存在极限向量 R R R表示马尔可夫链的平稳分布,满足:
M R = R MR=R MR=R
  平稳分布 R R R称为这个有向图的 P a g e R a n k PageRank PageRank R R R的各个分量称为各个结点的 P a g e R a n k PageRank PageRank值。
R = [ P R ( v 1 ) P R ( v 2 ) ⋮ P R ( v n ) ] \left.R=\left[\begin{array}{c}PR\left(v_1\right)\\PR\left(v_2\right)\\\vdots\\PR\left(v_n\right)\end{array}\right.\right] R= PR(v1)PR(v2)PR(vn)

  其中
P R ( v i ) = ∑ v j ∈ M ( v i ) P R ( v j ) L ( v j ) , i = 1 , 2 , ⋯   , n PR\left(v_i\right)=\sum_{v_j\in M\left(v_i\right)}\frac{PR\left(v_j\right)}{L\left(v_j\right)},\quad i=1,2,\cdots,n PR(vi)=vjM(vi)L(vj)PR(vj),i=1,2,,n

  这里 M ( v i ) M(v_i) M(vi) 表示指向结点 v i v_i vi的结点集合, L ( v j ) L(v_j) L(vj) 表示结点 v j v_j vj 连出的有向边的个数。

3.2. P a g e R a n k PageRank PageRank算法一般定义

  为了考虑到用户不仅会通过点击链接来浏览网页,还可能随机选择一个网页。因此需要在基本定义的基础上导入平滑项阻尼因子。阻尼因子 d d d 取值由经验决定,例如 d = 0.85 d=0.85 d=0.85。当 d d d 接近1时,随机游走主要依照转移矩阵 M M M 进行;当 d d d 接近0时,随机游走主要以等概率随机访问各个结点。
R = ( d M + 1 − d n E ) R = d M R + 1 − d n 1 \begin{aligned}R&=(dM+\frac{1-d}n\mathbf{E})R\\&=dMR+\frac{1-d}n1\end{aligned} R=(dM+n1dE)R=dMR+n1d1

  相当于:
P R ( v i ) = d ( ∑ v j ∈ M ( v i ) P R ( v j ) L ( v j ) ) + 1 − d n , i = 1 , 2 , ⋯   , n PR\left(v_i\right)=d\left(\sum_{v_j\in M\left(v_i\right)}\frac{PR\left(v_j\right)}{L\left(v_j\right)}\right)+\frac{1-d}n,\quad i=1,2,\cdots,n PR(vi)=d vjM(vi)L(vj)PR(vj) +n1d,i=1,2,,n

4. P a g e R a n k PageRank PageRank算法计算

4.1.幂迭代法

  首先给每个页面赋予随机的PR值,然后通过 P n + 1 = A ⋅ P n P_{n+1} = A \cdot P_n Pn+1=APn 不断地迭代 P R PR PR值。当满足下面的不等式后迭代结束,获得所有页面的 P R PR PR值:

∣ P n + 1 − P n ∣ < ϵ |P_{n+1}-P_n|<\epsilon Pn+1Pn<ϵ

  其中, ϵ \epsilon ϵ是预先定义的小正数。

4.2.特征值法

  特征值法是一种用于求解线性代数问题的方法,其中之一就是求解矩阵的特征值和特征向量。在上述描述中,特征值法用于分析 M a r k o v Markov Markov 链的收敛行为。

  具体来说,对于一个方阵 A A A,其特征值( e i g e n v a l u e s eigenvalues eigenvalues λ \lambda λ 和对应的特征向量( e i g e n v e c t o r s eigenvectors eigenvectors v \mathbf{v} v满足以下方程:

A ⋅ v = λ ⋅ v A \cdot \mathbf{v} = \lambda \cdot \mathbf{v} Av=λv

  这个方程可以重写为 ( A − λ ⋅ I ) ⋅ v = 0 (A - \lambda \cdot I) \cdot \mathbf{v} = \mathbf{0} (AλI)v=0,其中 I I I 是单位矩阵。

  对于 M a r k o v Markov Markov 链的情况,我们考虑转移矩阵 A A A。特征值法告诉我们,当 A A A 的特征值中存在一个值为 1 时,对应的特征向量可以用来表示 Markov 链的收敛状态。这个特征向量的所有分量均为正,而且是唯一的。

  在 P a g e R a n k PageRank PageRank 算法中,我们通过不断迭代

P n + 1 = A ⋅ P n P_{n+1} = A \cdot P_n Pn+1=APn

  来逼近这个特征向量,直到收敛。这就是特征值法在 P a g e R a n k PageRank PageRank 算法中的应用。

4.3.代数法

  相似的,当上面提到的 M a r k o v Markov Markov链收敛时,必有:
P = A P ⇒ P = ( α S + ( 1 − α ) N e e T ) P 方量都为 1 的列向量, P 的所有分量之和为 1 ⇒ P = α S P + ( 1 − α ) N e ⇒ ( e e T − α S ) P = ( 1 − α ) N e ⇒ P = ( e e T − α S ) − 1 ( 1 − α ) N e \begin{gathered} P=AP \\ \Rightarrow P=(\alpha S+\frac{(1-\alpha)}Nee^T)P \\ \text{方量都为}1\text{的列向量,}P\text{的所有分量之和为}1 \\ \Rightarrow P=\alpha SP+\frac{(1-\alpha)}Ne \\ \Rightarrow(ee^T-\alpha S)P=\frac{(1-\alpha)}Ne \\ \Rightarrow P=(ee^T-\alpha S)^{-1}\frac{(1-\alpha)}Ne \end{gathered} P=APP=(αS+N(1α)eeT)P方量都为1的列向量,P的所有分量之和为1P=αSP+N(1α)e(eeTαS)P=N(1α)eP=(eeTαS)1N(1α)e

5. P a g e R a n k PageRank PageRank算法计算实例

  利用 P a g e R a n k PageRank PageRank算法计算下图每一个结点对应的 P R PR PR
在这里插入图片描述
  迭代过程与最后结果如下所示:

IterationABCDE
10.20.0870.0870.12350.2455
20.23870.097620.097620.13910.2727
30.26180.10420.10420.14850.289
40.27570.10810.10810.1540.2988
50.283960.110450.110450.15740.3046
60.288920.111860.111860.15940.3081
70.29190.11270.11270.16060.3102
80.293680.113210.113210.16130.3115
90.294750.113510.113510.16180.3122
100.295390.113690.113690.1620.3127
110.295770.11380.11380.16220.3129
120.2960.113870.113870.16230.3131
13
210.2960.1130.1130.1620.313
Final0.2960.1130.1130.1620.313

6.算法工作源代码

6.1.绘制图网络代码

#绘制有向图
import networkx as nx
import matplotlib.pyplot as plt
G = nx.DiGraph()
nodes = ["A", "B", "C", "D", "E"]
G.add_nodes_from(nodes)
edges = [("A", "B"), ("A", "C"), ("A", "D"), ("B", "D"), ("C", "E"), ("D", "E"), ("B", "E"), ("E", "A")]
G.add_edges_from(edges)
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_color='black',
        font_weight='bold', arrowsize=20, connectionstyle='arc3,rad=0.1')
#plt.savefig("Graph.png")#随机的图像
plt.show()

6.2. P a g e R a n k PageRank PageRank算法Python代码实现

from pygraph.classes.digraph import digraph
import networkx as nx
import matplotlib.pyplot as plt
class PRIterator:
    """计算一张图中的PR值"""

    def __init__(self, dg):
        self.damping_factor = 0.85  # 阻尼系数,即α
        self.max_iterations = 100  # 最大迭代次数
        self.min_delta = 0.00001  # 确定迭代是否结束的参数,即ϵ
        self.graph = dg

    def page_rank(self):
        #  先将图中没有出链的节点改为对所有节点都有出链
        for node in self.graph.nodes():
            if len(self.graph.neighbors(node)) == 0:
                for node2 in self.graph.nodes():
                    dg.add_edge((node, node2))

        nodes = self.graph.nodes()
        graph_size = len(nodes)

        if graph_size == 0:
            return {}
        page_rank = dict.fromkeys(nodes, 1.0 / graph_size)  # 给每个节点赋予初始的PR值
        damping_value = (1.0 - self.damping_factor) / graph_size  # 公式中的(1−α)/N部分

        flag = False
        for i in range(self.max_iterations):
            change = 0
            for node in nodes:
                rank = 0
                for incident_page in self.graph.incidents(node):  # 遍历所有“入射”的页面
                    rank += self.damping_factor * (page_rank[incident_page] / len(self.graph.neighbors(incident_page)))
                rank += damping_value
                change += abs(page_rank[node] - rank)  # 绝对值
                page_rank[node] = rank

            print("This is NO.%s iteration" % (i + 1))
            print(page_rank)

            if change < self.min_delta:
                flag = True
                break
        if flag:
            print("finished in %s iterations!" % (i + 1))
        else:
            print("finished out of 100 iterations!")
        return page_rank
    

#%%
if __name__ == '__main__':
    dg = digraph()

    dg.add_nodes(["A", "B", "C", "D", "E"])

    dg.add_edge(("A", "B"))
    dg.add_edge(("A", "C"))
    dg.add_edge(("A", "D"))
    dg.add_edge(("B", "D"))
    dg.add_edge(("C", "E"))
    dg.add_edge(("D", "E"))
    dg.add_edge(("B", "E"))
    dg.add_edge(("E", "A"))

    pr = PRIterator(dg)
    page_ranks = pr.page_rank()

    print("The final page rank is\n", page_ranks)

7.参考资料

[1].https://zhuanlan.zhihu.com/p/137561088
[2].https://zhuanlan.zhihu.com/p/133233438
[3].https://www.mlpod.com/36.html
[4].https://www.cnblogs.com/rubinorth/p/5799848.html
[5].https://zhuanlan.zhihu.com/p/197877312
[6].https://blog.csdn.net/qq_36159768/article/details/108791236

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/340309.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

qml 简单变换

有3个圣诞树&#xff1a; 点击第1个圣诞树&#xff0c;每点击一次&#xff0c;向右平移10px&#xff1b; 点击第2个圣诞树&#xff0c;每点击一次&#xff0c;旋转角度增加20度&#xff1b; 点击第3个圣诞树&#xff0c;每点击一次&#xff0c;旋转角度增加20度&#xff0c;…

电脑如何pdf转图片?pdf转图片工具介绍

无论是为了共享、展示、编辑、安全保护、印刷出版、学术研究还是教育目的&#xff0c;使用电脑pdf转图片都是一种非常实用的工具和技术&#xff0c;它提供了更多的灵活性、可视化效果和安全性&#xff0c;适用于各种日常使用场景&#xff0c;那么有没有好用的pdf转图片工具推荐…

《GitHub Copilot 操作指南》课程介绍

第1节&#xff1a;GitHub Copilot 概述 一、什么是 GitHub Copilot 什么是 GitHub Copilot GitHub Copilot是GitHub与OpenAI合作开发的编程助手工具&#xff0c;利用机器学习模型生成代码建议。它集成在开发者的集成开发环境&#xff08;IDE&#xff09;中&#xff0c;可以根…

国产品牌GC6609与TM2209的参数分析,为什么适用于3D打印机,医疗器械等产品中

步进电机驱动的应用方案目前市场上大多选用国外品牌的电机驱动器&#xff0c;其中trinamic的TMC2208/2209在这一块的应用很广泛。但是由于市场越来越应激。&#xff0c;当前对于产品开发成本要求也越来越低&#xff0c;国产品地准出了相应的TMC2208/2209&#xff0c;因此trinam…

linux zabbix监控

zabbix总结 zabbix-server 10051 zabbix-agent 10050 zabbix-proxy 10051 1.监控项&#xff08;模板&#xff09;&#xff1a;获取监控数据 #模板直接链接到新的主机 2.触发器&#xff1a;设置一个值 在非合理区间报警 3.动作&#xff1a;可以帮忙发送通知&#xff08;告…

SpringBoot之文件上传

1、文件上传原理&#x1f618; 表单的enctype 属性规定在发送到服务器之前应该如何对表单数据进行编码。 当表单的enctype"application/x-www-form-urlencoded"&#xff08;默认&#xff09;时&#xff0c;form表单中的数据格式为&#xff1a;keyvalue&keyvalue …

中国电子学会2023年09月份青少年软件编程Scratch图形化等级考试试卷一级真题(含答案)

一、选择题&#xff08;共25题&#xff0c;每题2分&#xff09; 1.下列哪项内容是不可以修改的&#xff1f;&#xff08;2分&#xff09; A.角色名称 B.造型名称 C.舞台名称 D.背景名称 答案解析&#xff1a;舞台的名称无法修改&#xff0c;可以修改舞台中某一个背景的名…

ChatGPT:关于 OpenAI 的 GPT-4工具,你需要知道的一切

ChatGPT&#xff1a;关于 OpenAI 的 GPT-4工具&#xff0c;你需要知道的一切 什么是GPT-3、GPT-4 和 ChatGPT&#xff1f;ChatGPT 可以做什么&#xff1f;ChatGPT-4 可以做什么&#xff1f;ChatGPT 的费用是多少&#xff1f;GPT-4 与 GPT-3.5 有何不同&#xff1f;ChatGPT 如何…

【C语言进阶】编译和链接

引言 介绍编译和链接相关知识&#xff0c;计算机如何识别我们的代码&#xff0c;如何将我们的代码转化为计算机可执行程序。 ✨ 猪巴戒&#xff1a;个人主页✨ 所属专栏&#xff1a;《C语言进阶》 &#x1f388;跟着猪巴戒&#xff0c;一起学习C语言&#x1f388; 目录 翻译…

《WebKit 技术内幕》之七(2): 渲染基础

2 网页层次和RenderLayer树 2.1 层次和RenderLayer对象 前面章节介绍了网页的层次结构&#xff0c;也就是说网页是可以分层的&#xff0c;这有两点原因&#xff0c;一是为了方便网页开发者开发网页并设置网页的层次&#xff0c;二是为了WebKit处理上的便利&#xff0c;也就是…

使用 Vector 在 Kubernetes 中收集日志

多年来&#xff0c;我们一直在使用 Vector 在我们的 Kubernetes 平台中收集日志&#xff0c;并成功地将其应用于生产中以满足各种客户的需求&#xff0c;并且非常享受这种体验。因此&#xff0c;我想与更大的社区分享它&#xff0c;以便更多的 K8s 运营商可以看到潜力并考虑他们…

[足式机器人]Part2 Dr. CAN学习笔记- 最优控制Optimal Control Ch07-1最优控制问题与性能指标

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记 - 最优控制Optimal Control Ch07-1最优控制问题与性能指标

亚马逊KYC审核的重要性,所需提交的文件有哪些?—站斧浏览器

亚马逊KYC审核的重要性有哪些&#xff1f; KYC审核是亚马逊对卖家身份的一种验证&#xff0c;确保卖家遵守相关法规。只有通过审核的卖家才能在欧洲平台进行销售。因此&#xff0c;正确理解和应对KYC审核对于卖家来说至关重要。 注册完成后立即触发&#xff1a;新注册的卖家可…

【小沐学GIS】基于C#绘制三维数字地球Earth(OpenGL)

&#x1f37a;三维数字地球系列相关文章如下&#x1f37a;&#xff1a;1【小沐学GIS】基于C绘制三维数字地球Earth&#xff08;OpenGL、glfw、glut&#xff09;第一期2【小沐学GIS】基于C绘制三维数字地球Earth&#xff08;OpenGL、glfw、glut&#xff09;第二期3【小沐学GIS】…

TSKE 系列液氮低温恒温器

锦正茂科技有限公司研发的液氮型低温恒温器&#xff0c;利用液氮作为降温媒介&#xff0c;标准恒温器可实现快速降温至液氮温度&#xff08;约20min&#xff09;&#xff0c;其工作原理是在恒温器内部液氮腔内装入液氮&#xff0c;通过调整控温塞与冷指的间隙来保持冷指的漏热稳…

使用docker安装使用AWVS渗透常用工具

AWVS安装 AWVS我是装在Docker上的&#xff0c;在VPS中部署好Docker后&#xff0c;敲入以下命令 docker pull secfa/docker-awvs #拉取镜像 docker run -it -d -p 8443:3443 secfa/docker-awvs #将Docker的3443端口映射到VPS的8443端口访问https://VPS的IP:8443 默认账号密码&…

如何查看苹果手机的CPU型号?

摘要 本文将介绍如何在苹果手机上查看CPU型号。通过简单的设置操作&#xff0c;您可以轻松地获取您的iPhone的CPU型号信息。此外&#xff0c;我们还将介绍一些克魔助手可以提供的其他功能&#xff0c;如内存监控、GPU性能监控和网络抓包等&#xff0c;以帮助您优化和提升iOS应…

AI相关资料

文心一格收费,有免费额度 通义万相_AI创意作画_AI绘画_人工智能-阿里云 AI AIchatOS 即时 AI - 生成式图像创作及 UI 设计工具 Framer — The internet is your canvas

【pytorch框架】使用 PyTorch 进行深度学习

1.Pytorch介绍 PyTorch 是由 Facebook 创建和发布的用于深度学习计算的 Python 库。它起源于早期的库 Torch 7&#xff0c;但完全重写。 它是两个最受欢迎的深度学习库之一。PyTorch 是一个完整的库&#xff0c;能够训练深度学习模型以及在推理模式下运行模型&#xff0c;并支…

stm32内存分配博客笔记

原文&#xff1a; stm32内存分配 笔记&#xff1a; 1、向量表与代码段&#xff1b;根据Cortex-M3权威指南描述&#xff0c;系统复位后&#xff0c;在向量表异常0处保存的是堆栈起始地址&#xff0c;而后紧跟中断向量表 2、可以从链接脚本.ld文件中看到终端向量表第一个被链接…