python算法与数据结构(搜索算法和拓扑排序算法)---深度优先搜索

课程目标

  • 了解树/图的深度遍历,宽度遍历基本原理;
  • 会使用python语言编写深度遍历,广度遍历代码;
  • 掌握拓扑排序算法

搜索算法的意义和作用

搜索引擎

提到搜索两个子,大家都应该会想到搜索引擎,搜索引擎的基本工作步骤;
网页爬取 — 数据预处理 — 排序 — 查询
第一步,网页爬取,非常重要,简单来说,就是给爬虫(蜘蛛程序或者爬虫机器人)分配一组起始的网页,爬取一个网页后,解析提取出这个网页里的所有超链接,再依次爬取出这些超链接,再提取网页超链接,如此不断重复,从而提取网页内容。
在这里插入图片描述
海量的网页链接之间最终构成了一张图,于是问题就变成了如何遍历这张图。
现在的网络,网站机构复杂,信息太多,所以蜘蛛爬行也是有一定策略的。基础就是广度优先和深度优先两种。现实确实时间和带宽优先,再大的搜索引擎也仅仅只能是收入小部分网页。提升网络爬虫的主要方法有:提升网站权重/频繁更新/导入链接/减短与首页的距离等等。

深度优先搜索DFS

定义与基本内容

深度优先搜索属于图算法的一种(Depth First Search)。其过程简要来说就是对每一个可能的分支路径深入到不能深入为止,而且每一个节点只能访问一次。

深度优先搜索是每一次按照一个方向进行穷尽式的搜索,当该方向上的搜索无法继续往前的时候,这时候就退回到上一步,换一个方向继续搜索。

算法演示如下:
在这里插入图片描述

树的深度优先搜索

从跟节点开始,一直搜索左子树,直到某个节点没有左子树为止,接着换个方向搜索右子树。如图,
在这里插入图片描述
DFS的序列为(先序遍历):0 —> 1 —> 3 —> 4 —> 2 —> 5 —> 6

无向图的深度优先搜索

假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。
若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
在这里插入图片描述
从顶点A开始深度优先搜索;

  1. 访问A;
  2. 访问A的相邻节点C
  3. 访问C的相邻节点B
  4. 在步骤3中访问了C的邻节点B之后,B周围没有邻节点未被访问;因此返回C节点,访问C的另一个邻节点D;
  5. 在步骤4中访问了D后,D周围没有未被访问的邻接点,因此返回C,再返回A,访问F;
  6. 访问F的邻接点G
  7. 访问G的邻接点E

访问的顺序:A—C—B—D—F—G—E

有向图的深度优先搜索

在这里插入图片描述

  1. 步骤1,访问A
  2. 步骤2,访问A的出边的顶点B
  3. 步骤3,访问B的出边的顶点C
  4. 步骤4,访问C的出边的顶点E
  5. 步骤5,访问E的出边的顶点D和B(B在步骤2中已经访问过了)所以访问D
  6. 步骤6,返回之前的节点,直到碰到还有未访问的出边顶点,所以访问到B的出边顶点F
  7. 步骤7,访问G

访问顺序:A—B—C—E—D—F—G

典型题目(200. 岛屿数量)

https://leetcode.cn/problems/number-of-islands/description/
在这里插入图片描述
在这里插入图片描述
DFS(深度优先搜索)问题通常在树或者图结构上进行的,而这道提属于网络结构,网络结构要比二叉树结构稍微复杂,它其实是一个简化版的图结构。
分析:

  1. 访问相邻节点:网络结构中,上下左右四个位置都是相邻节点。坐标为(x, y)的格子,其四个相邻的格子分别为(x-1,y) (x+1,y) (x,y-1) (x,y+1)
  2. 判断base case:如果走进超出网格返回的格子,那么直接返回;
  3. 先往四个方向走一步再说,如果发现走出了网格范围再赶紧返回;
  4. 标记已经遍历过的格子。我们只关注值为1的格子做DFS遍历,每走过一个陆地格子,那就把格子的值改成0.

思路:

  • 采用DFS方式:从(i,j)向此点的上下左右(i+1, j),(i-1, j), (i, j-1),(i, j+1)做深度搜索;
  • 终止条件:①(i,j)越过矩阵边界;②非陆地
  • 搜索岛屿的同时,将遍历过的地方改为0,以免重复搜索相同岛屿

主循环:
遍历整个矩阵,当遇到grid[i][j]==1时,从此点开始做深度优先搜索dfs,岛屿的数量+1且在深度优先搜索中删除此岛屿。
最终返回岛屿数量count。

class Solution:
   def numIslands(self, grid: List[List[str]]) -> int:
        def dfs(grid, i, j, rows, cols):
            # 退出条件
            if i < 0 or i >  rows - 1 or j < 0 or j > cols - 1 or grid[i][j] != "1":
                return
            grid[i][j] = '0'
            dfs(grid, i, j+1, rows, cols)
            dfs(grid, i, j-1, rows, cols)
            dfs(grid, i+1, j, rows, cols)
            dfs(grid, i-1, j, rows, cols)

        rows = len(grid)
        if rows == 0:
            return 0
        cols = len(grid[0])

        num_islands = 0
        for i in range(rows):
            for j in range(cols):
                # 只有确认时岛屿,才会遍历
                if grid[i][j] == '1':
                    # 发现岛屿,岛屿个数加1
                    num_islands += 1
                    dfs(grid, i, j, rows, cols)
        
        return num_islands

附录基础

python基础语法

python基础精讲 http://t.csdnimg.cn/HdKdi

本专栏主要针对python基础语法,帮助学习者快速接触并掌握python大部分最重要的语法特征。
1、基本数据类型和变量
2、分支结构与循环结构
3、函数与异常处理
4、类与模块
5、文件读写

通过本专栏可以快速掌握python的基础语法。

python数据结构与算法理论基础(专栏)

数据结构与算法(python)http://t.csdnimg.cn/Gb6MN
程序 = 数据结构 + 算法;而且在面试过程中这些是必考,必问的内容。内容大纲:基础数据结构(树、链表、栈、队列等)、常见算法(排序算法、递归算法等)。

专栏是基于python的基础知识,是很好的入门学习资料。帮助大家快速理解这些数据结构和常见算法的概念,同时结合力扣题目,也能更好的掌握这些知识,达到在面试中游刃有余的效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/339999.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

决策树的分类

概念 决策树是一种树形结构 树中每个内部节点表示一个特征上的判断&#xff0c;每个分支代表一个判断结果的输出&#xff0c;每个叶子节点代表一种分类结果 决策树的建立过程 1.特征选择&#xff1a;选取有较强分类能力的特征。 2.决策树生成&#xff1a;根据选择的特征生…

C#实现基于Word保护性模板文件的修改

目录 制作一个保护性模板文件 给文件设置保护密码 设计模板内容 限制编辑 进一步的需求 范例运行环境 Office DCOM 配置 设计实现 进一步修改模板文件 设置和取消保护 遍历WORD内容控件 总结 制作一个保护性模板文件 在类似一些OA的自动化处理或审批类系统里&a…

Python文件操作和异常处理:高效处理数据的利器

文章目录 一、引言1.1 文件操作和异常处理对于编程的重要性1.2 Python作为实现文件操作和异常处理的强大工具 二、为什么学习文件操作和异常处理2.1 处理各种文件格式&#xff1a;从文本到图像到音频等2.2 确保代码的鲁棒性&#xff1a;有效处理异常情况 三、文件读取和写入3.1…

如何让亚马逊,速卖通,美客多店铺排名和流量稳定爬升

一、关键词优化 关键词是亚马逊店铺排名的关键。通过合理的关键词优化&#xff0c;可以提高店铺的曝光率。卖家需要研究消费者的搜索习惯和行为&#xff0c;了解他们使用哪些关键词进行搜索&#xff0c;然后将这些关键词用于商品描述、标题和元数据中。此外&#xff0c;还可以…

GEE:最小距离分类器(minimumDistance)分类教程(样本制作、特征添加、训练、精度、最优参数、统计面积)

作者:CSDN @ _养乐多_ 本文将介绍在Google Earth Engine (GEE)平台上进行最小距离分类(minimumDistance)的方法和代码,其中包括制作样本点教程(本地、在线和本地在线混合制作样本点,合并样本点等),加入特征变量(各种指数、纹理特征、时间序列特征、物候特征等),运行…

PCIe-6328 八口USB3.0图像采集卡:专为工业自动化和机器视觉设计

PCIe-6328一块8口USB 3.0主控卡&#xff0c;专为工业自动化和机器视觉相关应用设计。USB 3.0或称作高速USB&#xff0c;是一项新兴总线技术&#xff0c;10倍于USB2.0的传输速度&#xff0c;尤其适用于高速数据存储和图 像设备。 绝大多数现有USB 3.0卡兼用多个接口于一个USB 3…

中仕教育:国考调剂和补录的区别是什么?

国考笔试成绩和进面名单公布之后&#xff0c;考生们就需要关注调剂和补录了&#xff0c;针对二者之间的区别很多考生不太了解&#xff0c;本文为大家解答一下关于国考调剂和补录的区别。 1.补录 补录是在公式环节之后进行的&#xff0c;主要原因是经过面试、体检和考察&#…

喝酒高境界:微醺和断片之间找到平衡

云仓酒庄的品牌雷盛红酒LEESON分享喝酒追求放松&#xff0c;喝的刚刚好就是微醺状态&#xff0c;喝大了就会断片。所以有人说&#xff0c;喝酒最高的境界是在微醺与断片之间找到一种平衡。 微醺是指稍有酒意但完全清醒且没有任何不良反应&#xff0c;可以散步走回家&#xff0c…

5118会员优惠码,拿走不谢,2024年最新的优惠码

5118大数据平台会员优惠码【yhm666】&#xff0c;结算时勾选“使用优惠码”&#xff0c;然后在优惠码窗口中输入yhm666&#xff0c;然后点确定即可享受特价会员价格。阿腾云atengyun.com分享如下图&#xff1a; 5118会员优惠码【yhm666】 5118会员价格和使用优惠码之后的价格对…

ctfshow-反序列化(web267-web270)

目录 web267 web268 web269 web270 总结 web267 页面用的什么框架不知道 看源码看一下 框架就是一种软件工具&#xff0c;它提供了一些基础功能和规范&#xff0c;可以帮助开发者更快地构建应用程序。比如Yii框架和ThinkPHP框架就是两个流行的PHP框架&#xff0c;它们提供…

租赁一台同传设备,哪里比较专业呢

我们知道 &#xff0c;同声传译设备在会议、演讲或其他语言交流场合中发挥着至关重要的作用。它们能够实现不同语言之间的即时翻译&#xff0c;让与会者或听众更准确地理解会议或演讲的内容。对于跨国会议或活动&#xff0c;同声传译设备是确保语言沟通顺畅的必要工具。那么&am…

如何搭建MariaDB并实现无公网ip环境远程连接本地数据库

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” 文章目录 1. 配置MariaDB数据库1.1 安装MariaDB数据库1.2 测试局域网内远程连接 2. 内网穿透2.1 创建隧道映射…

2017年认证杯SPSSPRO杯数学建模B题(第二阶段)岁月的印记全过程文档及程序

2017年认证杯SPSSPRO杯数学建模 B题 岁月的印记 原题再现&#xff1a; 对同一个人来说&#xff0c;如果没有过改变面容的疾病、面部外伤或外科手术等经历&#xff0c;年轻和年老时的面容总有很大的相似性。人们在生活中也往往能够分辨出来两张不同年龄段的照片是不是同一个人…

sqli-labs通关笔记(less-11 ~ less16)

上一篇文章说了sqli-labs的less-1到less-10的注入方法&#xff0c;这一篇从less-11开始。 由于从11关开始都是post请求&#xff0c;不会像前十关一样存在符号转成url编码的麻烦&#xff0c;所以不再使用apifox&#xff0c;直接从页面上进行测试。 Less-11 老规矩&#xff0c;…

MySQL 8.3 发布,具体有哪些新增和删减?

MySQL 8.3 主要更新&#xff1a;用于标记事务分组的 GTID、JSON EXPLAIN 格式增强、一些功能删除等。 MySQL 是一款广泛使用的开源的关系型数据库管理系统&#xff0c;已推出其最新版本 MySQL 8.3。它带来了新功能和一些删除&#xff0c;有望简化数据库操作。让我们来看看有哪些…

机器学习:BootStrapping(Python)

import numpy as np import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA # 主成分分析 from sklearn.preprocessing import LabelEncoder, StandardScaler # 类别标签编码&#xff0c;标准化处理 import matplo…

MySQL ORDER BY(排序) 语句

昨天介绍了 MySQL 数据库 UNION 操作符的使用&#xff0c;今天主要讲解下 ORDER BY&#xff08;排序&#xff09;语句。 我们知道从 MySQL 表中使用 SELECT 语句来读取数据。如果需要对读取的数据进行排序&#xff0c;我们就可以使用 MySQL 的 ORDER BY 子句来设定你想按哪个字…

React Native性能优化指南

摘要 本文将介绍在React Native开发中常见的性能优化问题和解决方案&#xff0c;包括ScrollView内无法滑动、热更新导致的文件引用问题、高度获取、强制横屏UI适配、低版本RN适配iOS14、缓存清理、navigation参数取值等。通过代码案例演示和详细说明&#xff0c;帮助开发者更好…

如何本地安装Python Flask并结合内网穿透实现远程开发

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

深度学习记录--学习率衰减(learning rate decay)

学习率衰减 mini-batch梯度下降最终会在最小值附近的区间摆动(噪声很大)&#xff0c;不会精确收敛 为了更加近似最小值&#xff0c;采用学习率衰减的方法 随着学习率的衰减&#xff0c;步长会逐渐变小&#xff0c;因此最终摆动的区间会很小&#xff0c;更加近似最小值 如下…