基于卷积神经网络的狗猫数据集分类实验

目录

    • 一、环境配置
      • 1、anaconda安装
      • 2、配置TensorFlow、Keras
    • 二、数据集分类
      • 1、分类源码
      • 2、训练流程
    • 三、模型调整
      • 1、图像增强
      • 2、网络模型添加dropout层
    • 四、使用VGG19优化提高猫狗图像分类
    • 五、总结
    • 六、参考资料

一、环境配置

1、anaconda安装

下载链接:anaconda
也可以看我前面博客的介绍:Windows下安装Anaconda3并使用Jupyter进行基础练习

2、配置TensorFlow、Keras

在这里插入图片描述
输入以下命令:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.14.0
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras==2.2.5

二、数据集分类

数据集链接:猫狗数据集
提取码:6688

1、分类源码

import os, shutil
# The path to the directory where the original
# dataset was uncompressed
original_dataset_dir = 'D:/dogcat/train/train'

# The directory where we will
# store our smaller dataset
base_dir = 'D:/dogcat/find_cats_and_dogs'
os.mkdir(base_dir)

# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)

# Directory with our training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')
os.mkdir(train_cats_dir)

# Directory with our training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')
os.mkdir(train_dogs_dir)

# Directory with our validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')
os.mkdir(validation_cats_dir)

# Directory with our validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
os.mkdir(validation_dogs_dir)

# Directory with our validation cat pictures
test_cats_dir = os.path.join(test_dir, 'cats')
os.mkdir(test_cats_dir)

# Directory with our validation dog pictures
test_dogs_dir = os.path.join(test_dir, 'dogs')
os.mkdir(test_dogs_dir)

# Copy first 1000 cat images to train_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_cats_dir, fname)
    shutil.copyfile(src, dst)

# Copy next 500 cat images to validation_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 cat images to test_cats_dir
fnames = ['cat.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_cats_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy first 1000 dog images to train_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(train_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 dog images to validation_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1000, 1500)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(validation_dogs_dir, fname)
    shutil.copyfile(src, dst)
    
# Copy next 500 dog images to test_dogs_dir
fnames = ['dog.{}.jpg'.format(i) for i in range(1500, 2000)]
for fname in fnames:
    src = os.path.join(original_dataset_dir, fname)
    dst = os.path.join(test_dogs_dir, fname)
    shutil.copyfile(src, dst)

输出图片数量:

print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))

如图:
在这里插入图片描述
分类后数据集分为测试、训练、验证集。猫狗训练图片各1000张,验证图片各500张,测试图片各500张。

2、训练流程

1、构建网络模型

#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))

2、查看模型各参赛状态:

#输出模型各层的参数状况
model.summary()

如图:
在这里插入图片描述
3、对于编译步骤,我们将像往常一样使用RMSprop优化器。由于我们的网络是以一个单一的sigmoid单元结束的,所以我们将使用二元交叉矩阵作为我们的损失。

from keras import optimizers

model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

4、调整数据格式

from keras.preprocessing.image import ImageDataGenerator

# 所有图像将按1/255重新缩放
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        # 这是目标目录
        train_dir,
        # 所有图像将调整为150x150
        target_size=(150, 150),
        batch_size=20,
        # 因为我们使用二元交叉熵损失,我们需要二元标签
        class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

如图:
在这里插入图片描述
5、查看生成器输出:

for data_batch, labels_batch in train_generator:
    print('data batch shape:', data_batch.shape)
    print('labels batch shape:', labels_batch.shape)
    break

如图:
在这里插入图片描述
6、使用生成器使我们的模型适合于数据并保存生成的模型:

#模型训练过程
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=30,
      validation_data=validation_generator,
      validation_steps=50)
#保存训练得到的的模型
model.save('D:\\dogcat\\cats_and_dogs_small_1.h5')

7、训练过程:
在这里插入图片描述
8、在训练和验证数据上绘制模型的损失和准确性:

import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

三、模型调整

1、图像增强

#该部分代码及以后的代码,用于替代基准模型中分类后面的代码(执行代码前,需要先将之前分类的目录删掉,重写生成分类,否则,会发生错误)
from keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
      rotation_range=40,
      width_shift_range=0.2,
      height_shift_range=0.2,
      shear_range=0.2,
      zoom_range=0.2,
      horizontal_flip=True,
      fill_mode='nearest')

增强后的图像:

import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_cats_dir, fname) for fname in os.listdir(train_cats_dir)]
# We pick one image to "augment"
img_path = fnames[3]
# Read the image and resize it
img = image.load_img(img_path, target_size=(150, 150))
# Convert it to a Numpy array with shape (150, 150, 3)
x = image.img_to_array(img)
# Reshape it to (1, 150, 150, 3)
x = x.reshape((1,) + x.shape)
# The .flow() command below generates batches of randomly transformed images.
# It will loop indefinitely, so we need to `break` the loop at some point!
i = 0
for batch in datagen.flow(x, batch_size=1):
    plt.figure(i)
    imgplot = plt.imshow(image.array_to_img(batch[0]))
    i += 1
    if i % 4 == 0:
        break
plt.show()

如图:
在这里插入图片描述

2、网络模型添加dropout层

1、源码:

#网络模型构建
from keras import layers
from keras import models
#keras的序贯模型
model = models.Sequential()
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(32, (3, 3), activation='relu',
                        input_shape=(150, 150, 3)))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核2*2,激活函数relu
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#卷积层,卷积核是3*3,激活函数relu
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
#最大池化层
model.add(layers.MaxPooling2D((2, 2)))
#flatten层,用于将多维的输入一维化,用于卷积层和全连接层的过渡
model.add(layers.Flatten())
#退出层
model.add(layers.Dropout(0.5))
#全连接,激活函数relu
model.add(layers.Dense(512, activation='relu'))
#全连接,激活函数sigmoid
model.add(layers.Dense(1, activation='sigmoid'))
#输出模型各层的参数状况
model.summary()
from keras import optimizers
model.compile(loss='binary_crossentropy',
              optimizer=optimizers.RMSprop(lr=1e-4),
              metrics=['acc'])

2、添加后的网络结构
在这里插入图片描述
3、模型训练

train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
        # This is the target directory
        train_dir,
        # All images will be resized to 150x150
        target_size=(150, 150),
        batch_size=32,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=32,
        class_mode='binary')
history = model.fit_generator(
      train_generator,
      steps_per_epoch=100,
      epochs=100,
      validation_data=validation_generator,
      validation_steps=50)
model.save('D:\\dogcat\\cats_and_dogs_small_2.h5')

4、只进行数据增强的训练效果
在这里插入图片描述
5、数据增强和添加dropout层的训练效果
在这里插入图片描述
6、训练效果

acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

7、只进行数据增强的情况
在这里插入图片描述
在这里插入图片描述
8、数据增强和添加dropout层的训练效果
在这里插入图片描述
在这里插入图片描述

四、使用VGG19优化提高猫狗图像分类

1、构建网络模型

from keras import layers
from keras import models
from keras import optimizers
model = models.Sequential()
#输入图片大小是150*150 3表示图片像素用(R,G,B)表示
model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(150 , 150, 3)))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(64, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(128, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Conv2D(128, (3,3), activation='relu'))
model.add(layers.MaxPooling2D((2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4),
             metrics=['acc'])
model.summary()

在这里插入图片描述
2、初始化一个VGG19网络实例

from keras.applications import VGG19
conv_base = VGG19(weights = 'imagenet',include_top = False,input_shape=(150, 150, 3))
conv_base.summary()

首次运行时候,会自动从对应网站下载h5格式文件,上面下载很慢,而且还有可能在中途挂掉,因此建议将网址复制到浏览器上,直接下载。然后,将下载的文件,放到对应的目录下。

模型网络结构如图:
在这里插入图片描述
3、将数据集传给神经网络

import os 
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
# 数据集分类后的目录
base_dir = 'D:\\daoandcat\\cats_and_dogs_small'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
datagen = ImageDataGenerator(rescale = 1. / 255)
batch_size = 20
def extract_features(directory, sample_count):
    features = np.zeros(shape = (sample_count, 4, 4, 512))
    labels = np.zeros(shape = (sample_count))
    generator = datagen.flow_from_directory(directory, target_size = (150, 150), 
                                            batch_size = batch_size,
                                            class_mode = 'binary')
    i = 0
    for inputs_batch, labels_batch in generator:
        #把图片输入VGG16卷积层,让它把图片信息抽取出来
        features_batch = conv_base.predict(inputs_batch)
        #feature_batch 是 4*4*512结构
        features[i * batch_size : (i + 1)*batch_size] = features_batch
        labels[i * batch_size : (i+1)*batch_size] = labels_batch
        i += 1
        if i * batch_size >= sample_count :
            #for in 在generator上的循环是无止境的,因此我们必须主动break
            break
        return features , labels
#extract_features 返回数据格式为(samples, 4, 4, 512)
train_features, train_labels = extract_features(train_dir, 2000)
validation_features, validation_labels = extract_features(validation_dir, 1000)
test_features, test_labels = extract_features(test_dir, 1000)	

4、将抽取的特征输入到我们自己的神经层中进行分类训练

from keras import models
from keras import layers
from keras import optimizers
#构造我们自己的网络层对输出数据进行分类
model = models.Sequential()
model.add(layers.Dense(256, activation='relu', input_dim = 4 * 4 * 512))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(1, activation = 'sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr = 2e-5), loss = 'binary_crossentropy', metrics = ['acc'])
history = model.fit(train_features, train_labels, epochs = 30, batch_size = 20, 
                    validation_data = (validation_features, validation_labels))

训练过程如图:
在这里插入图片描述
5、训练结果

import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label = 'Train_acc')
plt.plot(epochs, val_acc, 'b', label = 'Validation acc')
plt.title('Trainning and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label = 'Training loss')
plt.plot(epochs, val_loss, 'b', label = 'Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

五、总结

1、解释什么是overfit(过拟合)
简单理解就是训练样本得到的输出和期望输出过于一致,而测试样本输出与期望输出相差却很大。为了得到一致假设而使假设变得过度复杂称为过拟合。想像某种学习算法产生了一个过拟合的分类器,这个分类器能够百分之百的正确分类样本数据(即再拿样本中的文档来给它,它绝对不会分错),但也就为了能够对样本完全正确的分类,使得它的构造如此精细复杂,规则如此严格,以至于任何与样本数据稍有不同的文档它全都认为不属于这个类别!
2、什么是数据增强?
数据集增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。数据增强也叫数据扩增,意思是在不实质性的增加数据的情况下,让有限的数据产生等价于更多数据的价值。
3、如果单独只做数据增强,精确率提高了多少?
大约提高了0.07。
4、然后再添加的dropout层,是什么实际效果?
只进行图像增强获得的模型和进行图像增强与添加dropout层获得的模型,可以发现前者在训练过程中波动会更大,后者在准确上小于前者。两者虽然在准确率有所变小,但是都避免了过拟合。

六、参考资料

https://blog.csdn.net/ssj925319/article/details/117787737
https://blog.csdn.net/qq_43279579/article/details/117298169

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/33963.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Appium安装部署

目录 一、检查Java环境 二、安装android SDK 一、检查Java环境 Android SDK依赖ava环境,因此需要先安装jdk。在CMD中输入java -version 出现下图的结果,说明当前环境已安装jdk 如果提示java命令无效,请安装后进行下一步。 二、安装androi…

iOS App的上架和版本更新流程

一、前言: 作为一名iOSDeveloper,把开发出来的App上传到App Store是必要的。下面就来详细讲解一下具体流程步骤。 二、准备: 一个已付费的开发者账号(账号类型分为个人(Individual)、公司(Com…

单片机-串口通信

1.串口向电脑发送数据 1.配置串口 T1定时器,方式二8位重装 void UartInit(void) //4800bps11.0592MHz {PCON & 0x7F; //波特率不倍速SCON 0x50; //8位数据,可变波特率TMOD & 0x0F; //清除定时器1模式位TMOD | 0x20; //设定定时器1为8位自动重装方式…

【论文笔记】FASTER SEGMENT ANYTHING:TOWARDS LIGHTWEIGHT SAM FOR MOBILE APPLICATIONS

前脚fast SAM刚发完,后脚mobile SAM就发了 ,之前的论文笔记中我一直就认为fast SAM其实应该算是yolo的扩展工作,和原生的SAM架构相去甚远,而且在简介上直接就对(gong)比(ji)了FastSA…

ElasticSearch 8.0+ 版本Windows系统启动

下载地址:https://www.elastic.co/cn/downloads/past-releases/winlogbeat-8-8-1 解压\elasticsearch\elasticsearch-8.5.1 进入bin目录,启动elasticsearch.bat 问题1: warning: ignoring JAVA_HOMED:\jdk1.8.0_271; using bundled JDK J…

【FPGA】Verilog:时序电路设计 | 自循环移位寄存器 | 环形计数 | 扭环计数 | 约翰逊计数器

前言:本章内容主要是演示Vivado下利用Verilog语言进行电路设计、仿真、综合和下载 示例:计数器 ​​ 功能特性: 采用 Xilinx Artix-7 XC7A35T芯片 配置方式:USB-JTAG/SPI Flash 高达100MHz 的内部时钟速度 存储器:2Mb…

简单认识Tomcat的部署和优化

文章目录 一、简单认识Tomcat1、简介2、构成3、Tomcat 功能组件结构4、Tomcat 请求过程: 二、Tomcat部署1.关闭防火墙,将安装 Tomcat 所需软件包传到/opt目录下2.安装JDK3.设置JDK环境变量4.测试java环境5.安装Tomcat6.启动和关闭Tomcat7.优化 tomcat 启…

【每日一题】2. 两数相加

【每日一题】2. 两数相加 2. 两数相加题目描述解题思路 2. 两数相加 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一…

会网络爬虫能干什么?

网络爬虫是一种自动化程序,用于浏览互联网并从网页中获取数据。它可以执行以下任务: 数据采集:网络爬虫可以访问网站,并从中提取所需的数据,例如新闻文章、产品信息、用户评论等。这些数据可以用于各种目的&#xff0…

MySQL复合查询

目录 一、多表查询 二、自连接 三、子查询 3.1 单行子查询 3.2 多行子查询 3.3 多列子查询 3.4 在from子句中使用子查询 四、合并查询 一、多表查询 实际开发中往往需要将多张表关联起来进行查询,即多表查询在进行多表查询时,只需将多张表的表名…

python机器学习——机器学习相关概念 特征工程

目录 机器学习特征工程1.特征抽取2.特征处理2.1 归一化:传统精确小数据2.2 标准化:大多数情况 3.数据降维3.1特征选择3.2主成分分析PCA 案例:超市订单分析 机器学习 监督学习:输入数据有特征有标签,即有标准答案 分类&…

5.4.1 虚拟专用网VPN

5.4.1 虚拟专用网VPN 我们已经学习了因特网的路由协议(5.3.1 因特网的路由协议(一)、5.3.2 因特网的路由协议(二)基于距离向量算法的RIP协议、5.3.3 因特网的路由协议(三)OSPF协议、5.3.4 因特…

无锡斑目信息技术有限公司与无锡漫途科技有限公司签署战略伙伴合作协议!

2023年6月21日无锡斑目信息技术有限公司与无锡漫途科技有限公司签署战略伙伴合作协议。双方将在数字工厂、智慧城市等领域凭借各自的优势进行全方面的合作。 漫途传感科技总经理田吉成、无锡艾森汇智科技总经理钱小伟、无锡数字城市建设发展工业互联网事业部部长王威共同参加签…

kafka安装(包含Zookeeper 安装)

kafka 依赖于 Zookeeper 1. Zookeeper 本地模式安装 修改配置文件 解压后的目录中的 conf 路径下,将文件 zoo_sample.cfg 修改为 zoo.cfg。 mv zoo_sample.cfg zoo.cfg打开 zoo.cfg 文件,修改 dataDir 路径。 dataDir 路径 默认在 /tmp 下&#xff0…

尚硅谷微信小程序开发 仿网易云音乐App 小程序 后端接口服务器搭建

小程序学习 尚硅谷微信小程序开发 项目网易云小程序学习地址: 01-尚硅谷-小程序-课程介绍_哔哩哔哩_bilibili 视频相关的教程文档与笔记分享 链接:https://pan.baidu.com/s/1aq7ks8B3fJ1Wahge17YYUw?pwd7oqm 提取码:7oqm 配套服务器 老师…

Redis的高可用与持久化

目录 一、Redis 高可用1. 持久化2. 主从复制3. 哨兵4. 集群(cluster) 二、Redis 持久化方式1. 持久化的功能2. 持久化的方式 三、RDB 持久化1. 触发条件2.执行流程3. 启动时加载 四、AOF持久化1.开启 AOF2. 执行流程2.1 命令追加2.2 文件写入(write)和文…

路由基础静态路由

路由基础&静态路由 一、路由器基本原理1.1、路由器基本概述1.2、LAN和广播域1.3、路由选路1.3.1、路由器转发数据包1.3.2、IP路由表1.3.3、建立路由表1.3.4、最长匹配原则1.3.5、路由优先级1.3.6、路由度量1.3.7、等价路由 1.4、总结 二、静态路由基础2.1、静态路由配置2.2…

《计算机系统与网络安全》 第九章 访问控制技术

🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~&#x1f33…

自动刷新工具--可以自动编辑安居客房源信息

本工具可以自动刷新安居客的房源信息,不是爬虫,就是一款解放劳动力的RPA工具 使用方法: 1. 首先输入要自动刷新的房源id 2.点击 开始执行 如果需要免密登陆,需要在个人中心填上anjuke的账密 定时执行 声明:此工具只是…

机器学习基础

引言 机器学习是人工智能的一个重要分支,它正在推动着我们社会的各个方面进行数字化转型,从电子商务、医疗健康、社交媒体到自动驾驶等领域。本文旨在帮助你理解机器学习的基本概念,包括其定义、主要类型、基本术语,以及常见的算…