Python实现单因素方差分析

Python实现单因素方差分析

1.背景

正念越来越受到人们关注,正念是一种有意的、不加评判的对当下的注意觉察。可以通过可以通过观呼吸、身体扫描、正念饮食等多种方式培养。
为了验证正念对记忆力的影响,选取三组被试分别进行正念训练,运动训练和无训练,以测量他们的短时记忆是否改善。在各种条件严格控制下,三个月后测量各组的短时记忆回忆容量,结果如下:
在这里插入图片描述

为了验证各组是否存在差异,采用单因素方差分析进行分析,并同时使用SPSS对每一步代码进行说明。
PS:此处为随机数生成,且为了方便展示使用了宽数据,导入SPSS时可使用“数据”-“重构”转换为SPSS常用的长数据。

2.Python代码

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.stats.multicomp import pairwise_tukeyhsd  # 事后比较
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm

independent = "处理"  # 自变量
dependent = '短时记忆回忆成绩'  # 因变量


# 设置画图参数
def define_plt():
    plt.rcParams['font.sans-serif'] = ['SimHei', ]  # 设置汉字字体
    plt.rcParams['font.size'] = 12  # 字体大小
    plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号


# 处理数据
def general_data():
    # 使用melt()函数将读取数据进行结构转换,以满足ols()函数对数据格式的要求,
    # melt()函数能将列标签转换为列数据
    excel_data = pd.read_excel('不同正念处理下的短时记忆成绩.xlsx', index_col=0)
    melt_data = excel_data.melt(var_name=independent, value_name=dependent)
    print("\n=================melt_data========================")
    print(melt_data)
    return melt_data


# 显示箱型线,检查是否有极端数值
def show_boxplot(melt_data):
    sns.boxplot(x=independent, y=dependent, data=melt_data)
    plt.show()  # 需要放最后运行,否则会阻挡后面程序的运行


# 方差分析
def anova(melt_data):
    # ols()创建一线性回归分析模型
    model_ols = ols('%s~C(%s)' % (dependent, independent), melt_data).fit()
    # anova_lm()函数创建模型生成方差分析表
    anova_table = anova_lm(model_ols, typ=2)
    print("\n=================以下为方差分析表====================")
    print(anova_table)


# 事后比较
def multiple_comparisons(melt_data):
    # 进行事后比较分析
    print("\n=================事后比较分析结果====================")
    print(pairwise_tukeyhsd(melt_data[dependent], melt_data[independent]))


define_plt()  # 定义plt参数
memory_result = general_data()  # 生成数据
anova(memory_result)  # 方差分析
multiple_comparisons(memory_result)  # 事后比较
show_boxplot(memory_result)  # 显示箱型线

3.结果

3.1 运行以上代码,会出现如下结果

3.3.1 方差分析输出结果

在这里插入图片描述

对比一下SPSS的输出结果:
英文版
在这里插入图片描述

中文版
在这里插入图片描述

可以看出,Python的输出结果比较简洁,不过其实组别和误差两项也够用了。

3.3.2 事后比较分析结果
在这里插入图片描述

和SPSS中的结果进行比较:
英文版:
在这里插入图片描述

中文版:
在这里插入图片描述

可以看出,Python也是只输出了三个组的对比,不过和SPSS相比,也只是反过来用负数表示而已,重点关注画框的地方,大于0.05说明不能拒绝零假设,Python输出结果则是用False表示。

3.3.3 箱型图
在这里插入图片描述

SPSS的输出结果:
在这里插入图片描述

PS:部分字的内容不一样是我在不同地方输入变量的问题,这个无关紧要。
可以看到正念组是明显高于其他两个组的。

箱型图怎么看

箱型图的基本组成部分包括:
1.上边缘:数据点的最右侧界限,通常是最大值。
2.下边缘:数据点的最左侧界限,通常是最小值。
3.中位数:所有数据点按照大小顺序排列后位于中间位置的数值。
4.四分位距:IQR(Interquartile Range,四分位间距)定义为中位数与第一四分位数之间的距离的一半。
5.异常值:那些明显偏离数据集整体趋势的数据点,通常用圆点表示。
箱型图一般不包括均值。

4.逐个部分讲解

4.1 宽数据转换为长数据

当我们把这张Excel表导入SPSS时,
在这里插入图片描述

会显示如下
在这里插入图片描述

而我们要将其转换为长数据,即每个列为一个变量的类型

4.1.1 Python代码

在Python代码中,使用melt()函数实现

# 处理数据
def general_data():
    # 使用melt()函数将读取数据进行结构转换,以满足ols()函数对数据格式的要求,
    # melt()函数能将列标签转换为列数据
    excel_data = pd.read_excel('不同正念处理下的短时记忆成绩.xlsx', index_col=0)
    melt_data = excel_data.melt(var_name=independent, value_name=dependent)
    print("\n=================melt_data========================")
    print(melt_data)
    return melt_data

我们将输出结果打印出来,如下

=================melt_data========================
     处理  短时记忆回忆成绩
0   正念组      11.3
1   正念组      10.8
2   正念组       8.4
3   正念组       8.5
4   正念组       8.9
5   正念组      10.7
6   正念组       8.4
7   正念组      11.1
8   正念组       8.3
9   正念组      11.9
10  运动组       7.0
11  运动组       6.4
12  运动组       7.6
13  运动组       6.2
14  运动组       6.6
15  运动组       8.2
16  运动组       5.7
17  运动组       8.9
18  运动组       8.7
19  运动组       6.7
20  控制组       6.3
21  控制组       5.2
22  控制组       9.0
23  控制组       5.0
24  控制组       7.5
25  控制组       6.3
26  控制组       6.0
27  控制组       5.2
28  控制组       7.1
29  控制组       7.4

4.1.2 对应的SPSS操作

为了适应使用不同语言的场景,我将同时呈现中文版和英文版
1.数据-重构
在这里插入图片描述
在这里插入图片描述

2.将选定变量重构为个案(C)
在这里插入图片描述
在这里插入图片描述

3.重构一个变量组
在这里插入图片描述
在这里插入图片描述

4.把数据列都放入目标变量中,个案组标识和固定变量可以先不管
在这里插入图片描述
在这里插入图片描述

5.这一步将各组名作为索引变量
在这里插入图片描述
在这里插入图片描述

6.选择使用变量名作为索引
在这里插入图片描述
在这里插入图片描述

7.之前那个序号没什么用,可以直接删除
在这里插入图片描述
在这里插入图片描述

8.完成即可
在这里插入图片描述
在这里插入图片描述

9.确定
在这里插入图片描述
在这里插入图片描述

10.可以看到新生成名为索引1的一列
在这里插入图片描述
在这里插入图片描述

11.点一下下面的变量视图,将索引1改成组别
在这里插入图片描述
在这里插入图片描述

12.再将组别排序,即可获得长数据
在这里插入图片描述
在这里插入图片描述

其实这样操作还不如直接在Excel里面操作,可能还方便一些,这里只是做个展示。

而且在SPSS中,如果使用“分析”-“比较平均值”下面的“单因素 ANOVA 检验…”,则不能使用字符串,如“正念组”这样,而是要转换成数字123之类的,变成组1组2组3,但是这样看起来不方便,输出结果也不好看。我们还可以使用“分析”-“一般线性模型”下的单变量,来达到方差分析的目的。

4.2 方差分析

4.2.1 Python代码

# 方差分析
def anova(melt_data):
    # ols()创建一线性回归分析模型
    model_ols = ols('%s~C(%s)' % (dependent, independent), melt_data).fit()
    # anova_lm()函数创建模型生成方差分析表
    anova_table = anova_lm(model_ols, typ=2)
    print("\n=================以下为方差分析表====================")
    print(anova_table)

Python输出结果:
在这里插入图片描述

4.2.2 SPSS操作
在这里插入图片描述
在这里插入图片描述

一般这里我们会按需要点击“图”、“事后比较”、“选项”这些来输出一些内容,比如描述统计、齐性检验,交互图什么的,不过这里暂时不需要,为了让输出纯粹一点,选好因变量和固定因子直接点确定即可。
在这里插入图片描述
在这里插入图片描述

SPSS输出结果:
中文版
在这里插入图片描述

英文版
在这里插入图片描述

4.3 事后比较

4.3.1 Python代码

# 事后比较
def multiple_comparisons(melt_data):
    # 进行事后比较分析
    print("\n=================事后比较分析结果====================")
    print(pairwise_tukeyhsd(melt_data[dependent], melt_data[independent]))

Python输出结果:
在这里插入图片描述

4.3.2 SPSS操作

在这里插入图片描述
在这里插入图片描述

选择事后比较
在这里插入图片描述
在这里插入图片描述

选择“图基(Tukey)”即可
在这里插入图片描述
在这里插入图片描述

然后点确定
在这里插入图片描述
在这里插入图片描述

SPSS输出结果:
在这里插入图片描述
在这里插入图片描述

这一步同时还会输出主体间因子 Between-Subjects Factors,齐性子集 Homogeneous Subsets和前面的主体间效应检验 Tests of Between-Subjects Effects,不过这不是重点,我们主要关注和代码对应的部分即可。

4.4 箱型图

4.4.1 Python代码

# 设置画图参数
def define_plt():
    plt.rcParams['font.sans-serif'] = ['SimHei', ]  # 设置汉字字体
    plt.rcParams['font.size'] = 12  # 字体大小
    plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号

# 显示箱型线,检查是否有极端数值
def show_boxplot(melt_data):
    sns.boxplot(x=independent, y=dependent, data=melt_data)
    plt.show()  # 需要放最后运行,否则会阻挡后面程序的运行

Python输出结果:
在这里插入图片描述

4.4.2 SPSS操作

在这里插入图片描述
在这里插入图片描述

由于这里我们只是想看一下箱型图,不想输出太多内容,所以左下角点击只显示图即可,如果还想输出正态性检验,Q-Q图之类的,可以按需要点击右侧的按钮设置选取。
在这里插入图片描述

在这里插入图片描述
SPSS输出结果:
在这里插入图片描述

END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/338548.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+vue仓库管理系统

摘要 本文介绍了一种基于Spring Boot和Vue的现代化仓库管理系统的设计与实现。仓库管理是企业运营中至关重要的一环,它涉及到货物的进出、库存的管理以及订单的处理等方面。为了提高仓库管理的效率和精确度,我们设计了这个集成了前后端技术的系统。在系统…

37-WEB漏洞-反序列化之PHPJAVA全解(上)

WEB漏洞-反序列化之PHP&JAVA全解(上) 一、PHP 反序列化原理二、案例演示2.1、无类测试2.1.1、本地2.1.2、CTF 反序列化小真题2.1.3、CTF 反序列化类似题 2.2、有类魔术方法触发2.2.1、本地2.2.2、网鼎杯 2020 青龙大真题 三、参考资料 一、PHP 反序列…

16.云原生之kubesphere组件安装卸载

云原生专栏大纲 文章目录 KubeSphere组件介绍KubeSphere组件安装卸载配置内容参考安装组件步骤卸载组件步骤 KubeSphere组件介绍 KubeSphere 的全部可插拔组件如下: 配置项功能组件描述alertingKubeSphere 告警系统可以为工作负载和节点自定义告警策略。告警策略…

多级缓存

一、多级缓存 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未命中则查询数据库,如图: 存在下面的问题: •请求要经过Tomcat处理,Tomcat的性能成为整个系统的瓶颈 •Redis缓存失效时&#xff…

FPGA时序分析与时序约束(五)——使用Timing Analyzer进行时序分析与约束

Quartus的安装路径下会自带有例程,通过fir_filter进行学习如何使用Timing Analyzer进行时序分析与约束。 1.1 创建时序网表 打开fir_filter并进行综合后可通过菜单栏Tool->Timing Analyzer或工具栏按钮运行Timing Analyzer。 根据前面提到的,时序分析…

研学活动报名系统源码开发方案

一、项目背景与目标 (一)项目背景: 随着教育水平的提高和人们对综合素质培养的需求增加,研学活动作为一种教育方式受到了广大家长和学生的青睐。为了更好地组织和管理研学活动,需要建立一个研学活动报名系统&#xf…

大模型关键技术:上下文学习、思维链、RLHF、参数微调、并行训练、旋转位置编码、模型加速、大模型注意力机制优化、永久记忆、LangChain、知识图谱、多模态

大模型关键技术 大模型综述上下文学习思维链 CoT奖励建模参数微调并行训练模型加速永久记忆:大模型遗忘LangChain知识图谱多模态大模型系统优化AI 绘图幻觉问题从 GPT1 - GPT4 拆解GPTs 对比主流大模型技术点旋转位置编码层归一化激活函数注意力机制优化 大模型综述…

攻防世界——answer_to_everything-writeup

__int64 __fastcall not_the_flag(int a1) {if ( a1 42 )puts("Cipher from Bill \nSubmit without any tags\n#kdudpeh");elseputs("YOUSUCK");return 0LL; } kdudpeh这个东西,根据题目提示sha1加密 import hashlib flagkdudpeh x hashlib…

FastDDS版本变迁图解

eProsima Fast DDS 最完整的开源DDS中间件! eProsima Fast DDS是一个高性能的发布-订阅框架,它使用基于发布者、订阅服务器和数据主题的解耦模型在分布式系统中共享数据。 eProsima Fast DDS速度惊人,在Windows和Linux中都击败了ZeroMQ和其他pub-sub中间件等替代品。 让…

详解矩阵的三角分解A=LU

目录 一. 求解Axb 二. 上三角矩阵分解 三. 下三角矩阵分解 四. 矩阵的三角分解 举例1:矩阵三角分解 举例2:三角分解的限制 举例3:主元和乘法因子均为1 举例4:U为单位阵 小结 一. 求解Axb 我们知道高斯消元法可以对应矩阵…

[java基础揉碎]键盘输入语句

介绍 在编程中,需要接收用户输入的数据,就可以使用键盘输入语句来获取。 需要一个扫描器(对象),就是Scanner 用到的scanner代码例子

GitFlow工作流

基于 Git 这一版本控制系统,通过定义不同的分支,探索合适的工作流程来完成开发、测试、修改等方面的需求。 例如:在开发阶段,创建 feature 分支,完成需求后,将此分支合并到 develop 分支上;在发…

HarmonyOS鸿蒙应用开发 (一、环境搭建及第一个Hello World)

万事开头难。难在迈出第一步。心无旁骛,万事可破。没有人一开始就能想清楚,只有做起来,目标才会越来越清晰。--马克.扎克伯格 前言 2024年1月16日,华为目前开启已HarmonyOS NEXT开发者预览版Beta招募,报名周期为1月15…

elastic search入门

参考1:Elastic Search 入门 - 知乎 参考2:Ubuntu上安装ElasticSearch_ubuntu elasticsearch-CSDN博客 1、ElasticSearch安装 1.1安装JDK,省略,之前已安装过 1.2创建ES用户 创建用户:sudo useradd esuser 设置密码&…

Python基础第五篇(Python数据容器)

文章目录 一、数据容器入门二、数据容器 list 列表(1),list 列表定义(2),list列表的索引(3),list列表的常见操作(4),list列表的遍历 三、数据容器:tuple(元组)(1),tuple元组定义(2),tuple元组的索引(3),tuple元组的常见操作(4),tuple元组的遍…

解密.dataru被困的数据:如何应对.dataru勒索病毒威胁

导言: 在数字时代,勒索病毒如.dataru正在不断演变,威胁着用户的数据安全。本文91数据恢复将深入介绍.dataru勒索病毒的特点、被加密数据的恢复方法,以及预防措施,帮助您更好地了解并对抗这一数字威胁。当面对被勒索病…

磁盘分区机制

lsblk查看分区 Linux分区 挂载的经典案例 1. 虚拟机增加磁盘 点击这里,看我的这篇文章操作 添加之后,需要重启系统,不重启在系统里看不到新硬盘哦 出来了,但还没有分区 2. 分区 还没有格式化 3. 格式化磁盘 4. 挂载 5. 卸载…

UG制图-创建图纸的多种方法

1、2D:创建独立2D图纸,不引用任何3D模型 在UG软件中选择新建,或者快捷键ctrl N,进入新建命令,然后点击图纸,在关系中选择独立的部件,就创建了一个独立的图纸,我们可以在装配中添加…

大数据安全 | 期末复习(上)| 补档

文章目录 📚概述⭐️🐇大数据的定义、来源、特点🐇大数据安全的含义🐇大数据安全威胁🐇保障大数据安全🐇采集、存储、挖掘环节的安全技术🐇大数据用于安全🐇隐私的定义、属性、分类、…

SQL 注入总结(详细)

一、前言 这篇文章是最近学习 SQL 注入后的笔记,里面整理了 SQL 常见的注入方式,供大家学习了解 SQL 注入的原理及方法,也方便后续自己回顾,如有什么错误的地方欢迎指出! 二、判断注入类型 按照注入点类型分类 数字型…