全网最高质量文章:重新学习Java中的HashMap!!

前言

本文参考了美团技术团队的科普文章Java 8系列之重新认识HashMap - 知乎 (zhihu.com) 这篇文章的质量极其高,高到很有可能是全网介绍HashMap这个知识点最优秀的文章,没有之一!!!因此,我决定在我自己的文章中借鉴并改编这篇优秀的文章,保留其大部分内容,省略一些晦涩且不重要的部分,并在关键内容旁边用具体的例子进行解释。这样一来,我相信读者将更容易理解并受益于这些重要的观点和见解。

摘要

HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入了红黑树的数据结构和扩容的优化等。本文结合JDK1.7和JDK1.8的区别,深入探讨HashMap的结构实现和功能原理。

简介

Java为数据结构的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap,Hashtable,LinkedHashMap和TreeMap,类继承关系如下所示:

下面根据各个实现类的特点做一些说明:

(1)HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但是遍历顺序却是不确定的。HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者用ConcurrentHashMap。

(2)Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它继承自己Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。

(3)LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。

(4)TreeMap:TreeMap实现了SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。

对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象就很难定位到映射的位置了。

通过上面的比较,我们知道了HashMap是Java的Map家族中的一个普通成员,由于它可以满足大多数场景的使用条件,所以是使用频率最高的一个。下面我们主要结合源码,从存储结构,常用方法分析,扩容以及安全性等方面深入讲解HashMap的工作原理。

内部实现

搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构-字段;其次要弄明白它能干什么,即它的功能实现-方法。下面我们针对这两个方面详细展开讲解。

存储结构-字段

从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下所示。

这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么特点呢?

(1)从源码可知,HashMap类中有一个非常重要的字段,就是Node[] table,即哈希桶数组,明显它是一个Node数组。我们来看Node[JDK1.8]是何物。

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;    //用来定位数组索引位置
        final K key;
        V value;
        Node<K,V> next;   //链表的下一个node

        Node(int hash, K key, V value, Node<K,V> next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}

Node是HashMap的一个内部类。实现了Map.Entry接口,本质就是一个映射(键值对)。上图的每个黑色圆点就是一个Node对象。

(2)HashMap就是使用哈希表来存储的。哈希表为了解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中的HashMap采用了链地址法。链地址法,简单来说,就是数组+链表的结合。在每个数组元素上都是一个链表结构,当数组被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面的代码:

map.put("美团","小美");

系统会调用"美团"这个key的hashcode()方法得到其hashCode值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表明发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越低,map的存取效率就会越高。

如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组很小,即使好的Hash算法也会出现很多的碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的Hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶(Node[] table)数组占用空间又少呢?答案就是好的Hash算法和扩容机制。

在理解Hash和扩容机制之前,我们得先了解HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:

int threshold;             // 所能容纳的key-value对极限 
     final float loadFactor;    // 负载因子
     int modCount;  
     int size;

首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。

size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。

modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。

在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。

这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法。

功能实现-方法

HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。

1.确定哈希桶数组的索引位置

不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):

方法一:
static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);  //第三步 取模运算
}

这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算

对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。

这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。(这里这个作者说的太深奥了,我来举一个例子帮助大家理解为什么length要设置成2,4,8,16,且为什么要用length-1,且为什么要用h& (length-1)而不是h%length。因为length-1的值换成二进制都是全1,这样一来,加上&运算符,h & (table.length -1)就相当于取了h的低位,这里的低位其实就是相当于用h来模length,得到除剩的值)。

在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。

2.分析HashMap中的put方法

HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。但是我感觉那些源码实在是太难懂了,而且你看懂了流程图,知道它是怎么搞的就行,没有说一定要细嚼源码,那是大佬干的事情,本人真的因为实力不足,所以解释不清楚,如果想看的就可以自己上网查查源码,我这里就不放出来的(因为我要保证我的整篇文章都是易于大家理解的,太底层高深的东西不写)。

①.判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;

②.根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;

③.判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;

④.判断table[i] 是否为treeNode,即table[i] 是否是红黑树,如果是红黑树,则直接在树中插入键值对,否则转向⑤;

⑤.遍历table[i],判断链表长度是否大于8,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;

⑥.插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold,如果超过,进行扩容。

这个图和解释的文字虽然看起来复杂,但是只要你脑补到这个画面,有一个动态画面的过程其实就很好记了,真的没那么难记,比较简单。

算了,还是把源码放出来吧哈哈哈哈,想看也可以看一下:

JDK1.8HashMap的put方法源码如下:

public V put(K key, V value) {
 2     // 对key的hashCode()做hash
 3     return putVal(hash(key), key, value, false, true);
 4 }
 5 
 6 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 7                boolean evict) {
 8     Node<K,V>[] tab; Node<K,V> p; int n, i;
 9     // 步骤①:tab为空则创建
10     if ((tab = table) == null || (n = tab.length) == 0)
11         n = (tab = resize()).length;
12     // 步骤②:计算index,并对null做处理 
13     if ((p = tab[i = (n - 1) & hash]) == null) 
14         tab[i] = newNode(hash, key, value, null);
15     else {
16         Node<K,V> e; K k;
17         // 步骤③:节点key存在,直接覆盖value
18         if (p.hash == hash &&
19             ((k = p.key) == key || (key != null && key.equals(k))))
20             e = p;
21         // 步骤④:判断该链为红黑树
22         else if (p instanceof TreeNode)
23             e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
24         // 步骤⑤:该链为链表
25         else {
26             for (int binCount = 0; ; ++binCount) {
27                 if ((e = p.next) == null) {
28                     p.next = newNode(hash, key,value,null);
                        //链表长度大于8转换为红黑树进行处理
29                     if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st  
30                         treeifyBin(tab, hash);
31                     break;
32                 }
                    // key已经存在直接覆盖value
33                 if (e.hash == hash &&
34                     ((k = e.key) == key || (key != null && key.equals(k))))                                          break;
36                 p = e;
37             }
38         }
39         
40         if (e != null) { // existing mapping for key
41             V oldValue = e.value;
42             if (!onlyIfAbsent || oldValue == null)
43                 e.value = value;
44             afterNodeAccess(e);
45             return oldValue;
46         }
47     }

48     ++modCount;
49     // 步骤⑥:超过最大容量 就扩容
50     if (++size > threshold)
51         resize();
52     afterNodeInsertion(evict);
53     return null;
54 }

3.扩容机制

扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。

为了可以更好地理解这个扩容机制,我们可以分析一下源码,看看它是怎么做的,我感觉这个源码在我注释之后已经是很好理解了,看不懂源码就看看我的注释吧。

void resize(int newCapacity) {   //传入新的容量
 2     Entry[] oldTable = table;    //引用扩容前的Entry数组
 3     int oldCapacity = oldTable.length;         
 4     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了
 5         threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
 6         return;
 7     }
 8  
 9     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
10     transfer(newTable);                         //!!将数据转移到新的Entry数组里
11     table = newTable;                           //HashMap的table属性引用新的Entry数组
12     threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }

这里就是使用一个容量更大的数组来代替已有的容量小的数组,transfer()方法将原有Entry数组的元素拷贝到新的Entry数组里。

1 void transfer(Entry[] newTable) {
 2     Entry[] src = table;                   //src引用了旧的Entry数组
 3     int newCapacity = newTable.length;
 4     for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
 5         Entry<K,V> e = src[j];             //取得旧Entry数组的每个元素
 6         if (e != null) {
 7             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
 8             do {
 9                 Entry<K,V> next = e.next;
10                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
11                 e.next = newTable[i]; //标记[1]
12                 newTable[i] = e;      //将元素放在数组上
13                 e = next;             //访问下一个Entry链上的元素
14             } while (e != null);
15         }
16     }
17 }

newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。

下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2, 所以key = 3、7、5,put顺序依次为 5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子 loadFactor=1,即当键值对的实际大小size 大于 table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组 resize成4,然后所有的Node重新rehash的过程。

下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。

元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:

因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:

这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。

我说实话,这样子搞实在是太牛逼了,我都不知道为什么那些人这么鬼才,可以想到这种方法,果然是精英者!

线程安全性

在多线程使用场景中,应该尽量避免使用线程不安全的HashMap,而使用线程安全的ConcurrentHashMap。为什么说HashMap是线程不安全的呢?因为在多线程环境中,当多个线程同时进行HashMap 的插入、删除或修改操作时,可能导致数据的不一致性或损坏。为了解决线程安全的问题,可以使用线程安全的容器,如 ConcurrentHashMap,它采用了一些同步策略来保证在多线程环境下的安全性。

JDK1.8和JDK1.7的性能对比

HashMap中,如果key经过hash算法得出的数组索引位置全部不相同,即Hash算法非常好,那样的话,getKey方法的时间复杂度就是O(1),如果Hash算法技术的结果碰撞非常多,假如Hash算极其差,所有的Hash算法结果得出的索引位置一样,那样所有的键值对都集中到一个桶中,或者在一个链表中,或者在一个红黑树中,时间复杂度分别为O(n)和O(logN)。鉴于JDK1.8做了多方面的优化,总体性能优于JDK1.7,美团技术团队就从两个方面用例子证明这一点。

1.Hash比较均匀的情况

为了方便测试,美团技术团队他们就写了一个类Key,如下:

class Key implements Comparable<Key> {

    private final int value;

    Key(int value) {
        this.value = value;
    }

    @Override
    public int compareTo(Key o) {
        return Integer.compare(this.value, o.value);
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass())
            return false;
        Key key = (Key) o;
        return value == key.value;
    }

    @Override
    public int hashCode() {
        return value;
    }
}

这个类复写了equals方法,并且提供了相当好的hashCode函数,任何一个值的hashCode都不会相同,因为直接使用value当做hashcode。

现在,团队的成员们会开启他们的实验,测试需要做的仅仅是,创建不同size的HashMap(1、10、100、......10000000),屏蔽了扩容的情况,代码如下:

static void test(int mapSize) {

        HashMap<Key, Integer> map = new HashMap<Key,Integer>(mapSize);
        for (int i = 0; i < mapSize; ++i) {
            map.put(Keys.of(i), i);
        }

        long beginTime = System.nanoTime(); //获取纳秒
        for (int i = 0; i < mapSize; i++) {
            map.get(Keys.of(i));
        }
        long endTime = System.nanoTime();
        System.out.println(endTime - beginTime);
    }

    public static void main(String[] args) {
        for(int i=10;i<= 1000 0000;i*= 10){
            test(i);
        }
    }

在测试中会查找不同的值,然后度量花费的时间,为了计算getKey的平均时间,我们遍历所有的get方法,计算总的时间,除以key的数量,计算一个平均值,主要用来比较,绝对值可能会受很多环境因素的影响。结果如下:

通过观测测试结果可知,JDK1.8的性能要高于JDK1.7 15%以上,在某些size的区域上,甚至高于100%。由于Hash算法较均匀,JDK1.8引入的红黑树效果不明显,下面我们看看Hash不均匀的的情况。

2.Hash极度不均匀的情况

假设我们有一个非常差的Key,它们所有的实例都返回相同的hashCode值。这是使用HashMap最坏的情况。代码修改如下:

class Key implements Comparable<Key> {

    //...

    @Override
    public int hashCode() {
        return 1;
    }
}

仍然执行main方法,得出的结果如下表所示:

从表中结果中可知,随着size的变大,JDK1.7的花费时间是增长的趋势,而JDK1.8是明显的降低趋势,并且呈现对数增长稳定。当一个链表太长的时候,HashMap会动态的将它替换成一个红黑树,这话的话会将时间复杂度从O(n)降为O(logN)。hash算法均匀和不均匀所花费的时间明显也不相同,这两种情况的相对比较,可以说明一个好的hash算法的重要性。

小结

(1) 扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。

(2) 负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。

(3) HashMap是线程不安全的,不要在并发的环境中同时操作HashMap,建议使用ConcurrentHashMap。

(4) JDK1.8引入红黑树大程度优化了HashMap的性能。

(5) 还没升级JDK1.8的,现在开始升级吧。HashMap的性能提升仅仅是JDK1.8的冰山一角。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/337905.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智能安全帽定制_基于联发科MT6762平台的智能安全帽方案

智能安全帽是一种具备多项功能的高科技产品&#xff0c;其功能集成了视频通话监控、高清图像采集、无线数据传输、语音广播对讲、定位轨迹回放、静默报警、危险救援报警、脱帽报警、碰撞报警、近电报警以及智能调度系统等&#xff0c;同时还支持多功能模块的自由添加&#xff0…

设计模式-责任链

之前写代码的时候看到过有审批场景使用了责任链&#xff0c;当时大概看了一下代码实现&#xff0c;今天终于有时间抽出来梳理一下&#xff0c;下面是本文的大纲&#xff1a; 使用场景 审批场景的普遍应用 实际案例&#xff1a;HttpClient中的责任链模式 责任链模式在事件处理、…

RocketMQ学习总结

一、架构 1、NameServer&#xff1a;注册中心。Broker信息注册到NameServer&#xff1b;producer/consumer根据某个topic通过NameServer获取对应broker的路由信息 &#xff1b; 2、Broker&#xff1a;负责存储、拉取、转发消息&#xff1b; 3、Producer&#xff1a;消息生产者…

creature_summon_groups

字段介绍 这个表保存了关于临时召唤生物的数据 creature_summon_groups summonerId&#xff08;召唤者ID&#xff09; summonerType 0 时&#xff0c;此处为 creature 的 entrysummonerType 1 时&#xff0c;此处为 gameobject 的 entrysummonerType 2 时&#xff0c;此处…

从设备维修到机器视觉:我的职业发展之路

大家好&#xff01;我是学员向工&#xff0c;今天很高兴有机会与大家分享我的职业经历。十年前&#xff0c;18岁中专毕业的那年&#xff0c;我踏入社会&#xff0c;至今已经过去了十年。一开始&#xff0c;我主要从事设备的维修、装配、钳工和电工等多岗位工作。 然而&#xff…

大数据关联规则挖掘:Apriori算法的深度探讨

文章目录 大数据关联规则挖掘&#xff1a;Apriori算法的深度探讨一、简介什么是关联规则挖掘&#xff1f;什么是频繁项集&#xff1f;什么是支持度与置信度&#xff1f;Apriori算法的重要性应用场景 二、理论基础项和项集支持度&#xff08;Support&#xff09;置信度&#xff…

༺༽༾ཊ—Unity之-02-简单工厂模式—ཏ༿༼༻

首先我们打开一个项目 在这个初始界面我们需要做一些准备工作 建基础通用包 创建一个Plane 重置后 缩放100倍 加一个颜色 任务&#xff1a;使用【简单工厂模式】生成四种不同怪物 【按不同路径移动】 首先资源商店下载四个怪物模型 接下来我们选取四个怪物作为预制体并分别起名…

【Java并发】聊聊concurrentHashMap扩容核心流程

扩容 什么时候扩容 链表转红黑树。需要判断数组长度&#xff0c;触发扩容调用putAll() , 触发tryPresize() 方法数据量达到阈值 tryPresize-初始化数组 // 扩容前操作&#xff0c;putAll or 链表转红黑树 // size是原数组长度 * 2private final void tryPresize(int size) {…

如何在Servlet中获取请求参数的值

看看这个大佬做的动图吧&#xff01; 在Servlet中&#xff0c;你可以使用HttpServletRequest对象来获取请求参数的值。HttpServletRequest对象提供了一些方法&#xff0c;允许你访问从客户端发送的请求信息。以下是一些获取请求参数的常用方法&#xff1a; getParameter(String…

《SPSS统计学基础与实证研究应用精解》视频讲解:变量和样本观测值基本操作

《SPSS统计学基础与实证研究应用精解》4.1 视频讲解 视频为《SPSS统计学基础与实证研究应用精解》张甜 杨维忠著 清华大学出版社 一书的随书赠送视频讲解4.1节内容。本书已正式出版上市&#xff0c;当当、京东、淘宝等平台热销中&#xff0c;搜索书名即可。本书旨在手把手教会使…

k8s-ingress一

Comfigmap&#xff1a;存储数据 Date&#xff1a; Key&#xff1a;value 挂载的方式&#xff0c;把配置信息传给容器 生产当中的yml文件很长&#xff1a; 有deployment 容器的探针 资源限制 Configmap 存储卷 Service Ingress K8s的对外服务&#xff0c;ingress Se…

2023年总结我所经历的技术大变革

&#x1f4e2;欢迎点赞 &#xff1a;&#x1f44d; 收藏 ⭐留言 &#x1f4dd; 如有错误敬请指正&#xff0c;赐人玫瑰&#xff0c;手留余香&#xff01;&#x1f4e2;本文作者&#xff1a;由webmote 原创&#x1f4e2;作者格言&#xff1a;新的征程&#xff0c;我们面对的不仅…

只需要1天+10元,上线我的第①个工具站 - 50个工具站打卡计划

2023年用了一整年的时间探索技术变现的方式&#xff0c;学习到了特别多的理论知识。2024年到了爆发的时间了。今年计划上线50款出海工具站计划&#xff0c;我会详细记录开发工具站的全部流程。 工具站的核心任务是找到关键字&#xff0c;找对关键词并成功注册到适当的域名&…

logstack 日志技术栈-04-opensource 开源工具 SigNoz+Graylog

3. SigNoz SigNoz 是一个日志收集和分析工具&#xff0c;可以收集和管理来自各种来源的日志、指标、跟踪和异常。 它为使用 OpenTelemetry 检测应用程序提供本机支持&#xff0c;以防止供应商锁定&#xff0c;将收集到的数据存储在 ClickHouse 中&#xff0c;然后在用户友好的…

༺༽༾ཊ—Unity之-01-单例模式—ཏ༿༼༻

在游戏开发过程中&#xff0c;我们会创建各种各样的类&#xff0c;再用new生成实例&#xff0c;有些时候我们需要这个类在整个游戏中是唯一出现的&#xff0c;比如一些管理器比如声音管理器等&#xff0c;没必要创建很多实例&#xff0c;就算有很多模块需要各种声音功能&#x…

NSIS来打包windows安装程序,开源免费简单小巧,支持中文

NSIS (Nullsoft脚本安装系统)是一个专业的开源系统&#xff0c;用于创建 Windows 安装程序。它被设计成尽可能小和灵活&#xff0c;因此非常适合互联网分发&#xff0c;并且原生支持中文&#xff0c;不像inno setup还需要你单独安装一个中文语言包。 NSIS官网&#xff1a;NSIS…

二叉树进阶oj题目

二叉树进阶oj题目 两个结点的最近公共祖先前序中序&#xff08;中序后序&#xff09;还原二叉树 1、两个结点的最近公共祖先&#xff08;两种方法&#xff09; leetcode链接 题目描述&#xff1a;给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共…

【Linux系统编程】环境变量详解

文章目录 1. 环境变量的基本概念2. 如何理解呢&#xff1f;&#xff08;测试PATH&#xff09;2.1 切入点1查看具体的环境变量原因剖析常见环境变量 2.2 切入点2给PATH环境变量添加新路径将我们自己的命令拷贝到PATH已有路径里面 2.3 切入点3 3. 显示所有环境变量4. 测试HOME5. …

【浅谈Linux中批量化注释和批量化去注释】

这篇博客主要是关于Linux中注释与去注释&#xff0c;在Linux和vs等编译器中代码行的注释和去注释会有很大不同&#xff0c;Linux中主要使用指令的方式来进行。 目录 批量化注释 批量化去注释 批量化注释 操作 ctrlv,hjkl区域选择&#xff08;主要使用j-下移&#xff09;&…

GPT应用_PrivateGPT

项目地址&#xff1a;https://github.com/imartinez/privateGPT 1 功能 1.1 整体功能&#xff0c;想解决什么问题 搭建完整的 RAG 系统&#xff0c;与 FastGPT 相比&#xff0c;界面比较简单。但是底层支持比较丰富&#xff0c;可用于知识库的完全本地部署&#xff0c;包含大…