图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1

在这里插入图片描述

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

本项目的网络结构在network文件夹中,主要在modeling.py和_deeplab.py中:
modeling.py:指定要用的骨干网络是什么
_deeplab.py:根据modeling.py指定的骨干网络构建实际的网络结构

5、modeling.py的 _segm_resnet函数

def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone):

    if output_stride==8:
        replace_stride_with_dilation=[False, True, True]
        aspp_dilate = [12, 24, 36]
    else:
        replace_stride_with_dilation=[False, False, True]
        aspp_dilate = [6, 12, 18]
  • 如果输出步长为8,则
  • 替换步长用膨胀率,如果为None,设置默认值为[False, False, False],表示不使用空洞卷积,通过使用空洞卷积替代增加步长的标准卷积
  • 膨胀率为[12, 24, 36],用于调整空洞卷积
  • 如果输出步长不是8,则设置另外的参数
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained_backbone, replace_stride_with_dilation=replace_stride_with_dilation)
    inplanes = 2048
    low_level_planes = 256
  • 使用指定的ResNet版本构建backbone
  • resnet.__dict__是一个指向不同ResNet模型的字典
  • pretrained=pretrained_backbone指定是否加载预训练权重
  • replace_stride_with_dilation用于控制网络中卷积层的步长和膨胀
  • inplanes = 2048:设置网络最后一层的通道数
  • low_level_planes = 256:设置低层特征的通道数
    if name=='deeplabv3plus':
        return_layers = {'layer4': 'out', 'layer1': 'low_level'}#
        classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate)
    elif name=='deeplabv3':
        return_layers = {'layer4': 'out'}
        classifier = DeepLabHead(inplanes , num_classes, aspp_dilate)
    # 提取网络的第几层输出结果并给一个别名
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
    model = DeepLabV3(backbone, classifier)
    return model
  • return_layers 是一个字典,定义返回层,这个键值不用管,out对应的是带有高维度特征的输出对应的是比较大的物体的分割,low_level即小物体
  • classifier 初始化分类器,inplanes 传入分类器的特征通道数, low_level_planes 是低层特征的通道数,num_classes 是目标分类的类别数,aspp_dilate 是ASPP模块中使用的膨胀率
  • IntermediateLayerGetter(backbone, return_layers=return_layers),这里的backbone是之前定义的基础网络如resnet,return_layers定义了要从哪些层输出,IntermediateLayerGetter使得我们可以在后续的网络部分中使用这些特定层的输出进行进一步的处理和特征融合,最后得到修改后的backbone
  • model = DeepLabV3(backbone, classifier)使用修改后的backbone 和定义好的classifier构建DeepLabHeadV3Plus模型

6、_deeplab.py的 DeepLabHeadV3Plus类

在前面的_segm_resnet函数我们调用了DeepLabHeadV3Plus类来构建我们的网络,这部分介绍一下DeepLabHeadV3Plus类

6.1 构造函数

class DeepLabHeadV3Plus(nn.Module):
    def __init__(self, in_channels, low_level_channels, num_classes, aspp_dilate=[12, 24, 36]):
        super(DeepLabHeadV3Plus, self).__init__()
        self.project = nn.Sequential( 
            nn.Conv2d(low_level_channels, 48, 1, bias=False),
            nn.BatchNorm2d(48),
            nn.ReLU(inplace=True),
        )
        self.aspp = ASPP(in_channels, aspp_dilate)
        self.classifier = nn.Sequential(
            nn.Conv2d(304, 256, 3, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, num_classes, 1)
        )
        self._init_weight()
  1. self.project,定义一个执行序列,包含一个二维卷积、一个批归一化、一个ReLU激活
  2. self.aspp,调用ASPP类初始化一个对象
  3. self.classifier,定义一个执行序列包含一个二维卷积、一个批归一化、一个ReLU激活、一个二维卷积
  4. self._init_weight(),调用此类中一个函数,这个函数主要用于初始化权重

6.2 前向传播函数

在这里插入图片描述

    def forward(self, feature):
        low_level_feature = self.project( feature['low_level'] )#return_layers = {'layer4': 'out', 'layer1': 'low_level'}
        output_feature = self.aspp(feature['out'])
        output_feature = F.interpolate(output_feature, size=low_level_feature.shape[2:], mode='bilinear', align_corners=False)
        return self.classifier( torch.cat( [ low_level_feature, output_feature ], dim=1 ) )
  1. 前向传播函数
  2. 从前面的定义中获取低纬度的特征,再经过一个卷积、归一化、激活的执行序列也就是1*1的卷积,得到最终的low_level_feature
  3. 从前面的定义中获取高纬度的特征,经过一个ASPP特征提取网络,得到最终的output_feature
  4. 使用双线性插值调整output_feature 匹配low_level_feature 的维度
  5. 最后将output_feature 与low_level_feature 拼接后再经过一个分类器执行序列,得到最终DeepLabHeadV3Plus类的输出特征

6.3 def _init_weight(self):函数

    def _init_weight(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
  1. 初始化权重函数
  2. 遍历模型 DeepLabHeadV3Plus 中的所有层
  3. 如果当前这个层是卷积层,则:
  4. 使用Kaiming初始化
  5. 如果是批量标准化(BatchNorm)或组标准化(GroupNorm)层,则:
  6. 将这些层的权重初始化为1
  7. 将这些层的偏置初始化为0

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/335817.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#中chart控件

C#中chart控件 图表的5大集合 例子 第一步:创建工程 放入chart控件 series集合 选择图标类型 选择绘制曲线的宽度和颜色。 显示数据标签 Title集合 添加标题 调整标题字体:大小和颜色 CharsArea集合 对坐标轴进行说明 设置间隔 设置刻度…

使用Ultimate-SD-Upscale进行图片高清放大

之前我们介绍过StableSR进行图片高清放大,如果调的参数过大,就会出现内存不足的情况,今天我们介绍另外一个进行图片高清放大的神器Ultimate-SD-Upscale,他可以使用较小的内存对图像进行高清放大。下面我们来看看如何使用进行操作。…

Spark读取kafka(流式和批数据)

spark读取kafka(批数据处理) # 按照偏移量读取kafka数据 from pyspark.sql import SparkSessionss SparkSession.builder.getOrCreate()# spark读取kafka options {# 写kafka配置信息# 指定kafka的连接的broker服务节点信息kafka.bootstrap.servers: n…

无法访问云服务器上部署的Docker容器

说明:记录一次无法访问云服务器上部署的Docker容器的问题。 问题描述 某次,我在云服务器上,使用Docker运行了一个Nginx容器,用公网IP怎么也访问不到。这种情况博主也算有经验,可以从以下几个方面去排查: …

舵机使用总结

文章目录 1 舵机简介2 注意事项3 编写驱动程序3.1 使用STM32作为控制器3.1.1 计算高电平对应程序中的取值范围3.1.2 编写控制程序 1 舵机简介 舵机使用PWM控制,周期为20ms,通过改变高电平占空比来驱动,高电平通常为1~2ms( 或 0.5 …

RabbitMQ系列之入门级

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《RabbitMQ系列之入门级》。🎯&#x…

YOLOv8全网首发:新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF

💡💡💡本文独家改进:DCNv4更快收敛、更高速度、更高性能,与YOLOv8 SPPF高效结合 收录 YOLOv8原创自研 https://blog.csdn.net/m0_63774211/category_12511737.html?spm=1001.2014.3001.5482 💡💡💡全网独家首发创新(原创),适合paper !!! 💡💡💡…

AOI与AVI:在视觉检测中的不同点和相似点

AOI(关注区域)和AVI(视觉感兴趣区域)是视觉检测中常用的两个概念,主要用于识别和分析图像或视频中的特定区域。虽然这两个概念都涉及到注视行为和注意力分配,但它们在定义和实际应用等方面有一些差异。 AOI…

x86-x64汇编语言、反汇编知识和IDA

x86-x64汇编语言 基础知识 x86寄存器: 通用寄存器:EAX, EBX, ECX, EDX, ESI, EDI 栈顶指针寄存器:ESP 栈底指针寄存器:EBP 指令计数器:EIP 段寄存器:CS, DS, ES, FS, GS, SS x86-64寄存器:&a…

2.【C语言】(函数指针||sizeof||笔试题)

0x01.函数指针 void test(const char* str) {printf("%s\n", str); }int main() {void (*pf)(const char*) test;//pf是函数指针变量void (*pfarr[10])(const char*);//pfarr是存放函数指针的数组void (*(*p)[10])(const char*) &pfarr;//p是指向函数指针数组…

Leetcoder Day10|栈与队列part02(栈的应用)

语言:Java/C 目录 20. 有效的括号 1047. 删除字符串中的所有相邻重复项 150. 逆波兰表达式求值 今日总结 20. 有效的括号 给定一个只包括 (,),{,},[,] 的字符串,判断字符串是否有效。 有效字…

WEB接口测试之Jmeter接口测试自动化 (三)(数据驱动测试)

接口测试与数据驱动 1简介 数据驱动测试,即是分离测试逻辑与测试数据,通过如excel表格的形式来保存测试数据,用测试脚本读取并执行测试的过程。 2 数据驱动与jmeter接口测试 我们已经简单介绍了接口测试参数录入及测试执行的过程&#xff0…

Unity3D Pico VR 手势识别物体交互 适配 MRTK3

当前Pico已经支持手势识别了,但是提供的PICO Unity Integration SDK 中是没有手势和物体交互的功能,Unity XR Interaction Toolkit提供的手势识别物体交互对 Quest适配的挺好的,Pico 当前只能用指尖点触还不能对物体进行抓握以及手势控制射线…

数据结构一:算法效率分析(时间复杂度和空间复杂度)-重点

在学习具体的数据结构和算法之前,每一位初学者都要掌握一个技能,即善于运用时间复杂度和空间复杂度来衡量一个算法的运行效率。所谓算法,即解决问题的方法。同一个问题,使用不同的算法,虽然得到的结果相同,…

开发实践8_project

要求: 使用Restful对Chaos模型作基本操作。 结果: post 3 组数据后,get 查询如下: put修改后get: delete pk3之后get: 代码: python manage.py startapp pro8_app 注册 总路由 // path(pr…

免费200万Tokens 用科大讯飞API调用星火大模型服务

简介 自ChatGPT火了之后,国内的大模型发展如雨后春笋。其中的佼佼者之一就是科大讯飞研发的星火大模型,现在大模型已经更新到V3 版本,而且对开发者也是相当友好,注册就送200万tokens,讯飞1tokens 约等于 1.5 个中文汉字 或者 0.8 个英文单词…

JVM 如何判断一个对象可以被回收

Hi, 我是 浮生。 今天分享一道一线互联网公司必问的面试题。 ”JVM 如何判断一个对象可以被回收“ 关于这个问题,来看看高手的回答。 一、问题解析 在 JVM 里面,要判断一个对象是否可以被回收,最重要的是判断这个对象是否还在被…

中仕教育:省考怎么查每个岗位报考人数?一篇文章带你搞定!

参加省考避开热门岗位能够一定程度上提高上岸几率,怎么看岗位报考人数? 1. 官方公告:每年省考发布招录公告时,会公布各个岗位的招录人数,可以关注招录信息。 2. 查询报名数据:在报名结束后,省考招录机关…

debian12.4配置

文章目录 debian12.4配置概述笔记将非root用户添加到sudo组更换国内源配置ssh的客户端访问END debian12.4配置 概述 在虚拟机中装了一个debian12.4, 想配置ssh客户端连接, 出了问题. 配置乱了, 还好长了个心眼, 做了快照. 发现2个问题: debian12.4默认安装完, 有ssh, 先检查…

Python自动化测试【selenium面试题】

一、selenium中如何判断元素是否存在? expected_conditions模块提供了16种判断方法,以下方法是判断元素存在DOM中: presence_of_element_located """ An expectation for checking that an element is present on the DOM of…