Golang 搭建 WebSocket 应用(六) - 监控

我在上一篇文章中,提到了目前的认证方式存在一些问题,需要替换为一种更简单的认证方式。
但是最后发现,认证这个实在是没有办法简单化,认证本身又是另外一个不小的话题了,因此关于这一点先留个坑。

本文先讨论一下另外一个也比较重要的功能:监控。

为认证预留扩展点

虽然我们暂时不去实现更加完善的认证流程,但是我们依然可以先为其预留一个扩展点,
这样在未来我们要实现认证的时候,就不需要改动太多的代码了。

同样的,我们也可以基于 DIP 原则来实现,我们可以定义一个 Authenticator 接口:

type Authenticator interface {
	// Authenticate 验证请求是否合法,第一个返回值为用户 id,第二个返回值为错误
	Authenticate(r *http.Request) (string, error)
}

然后我们可以在 Hub 结构体中添加一个 authenticator 字段:

type Hub struct {
	// 验证器
	authenticator Authenticator
}

而对于我们目前的这种基于 jwt token 的认证方式,我们可以实现一个 JwtAuthenticator

var _ Authenticator = &JWTAuthenticator{}

type JWTAuthenticator struct {
}

func (J *JWTAuthenticator) Authenticate(r *http.Request) (string, error) {
	jwt := NewJwt(r.FormValue("token"))
	return jwt.Parse()
}

接着,我们在 newHub 中初始化这个 authenticator

func newHub() *Hub {
	return &Hub{
        // ... 其他代码 ...
		authenticator: &JWTAuthenticator{},
	}
}

这样,我们就可以在 serveWs 中使用这个 authenticator 了:

func serveWs(hub *Hub, w http.ResponseWriter, r *http.Request) {
	uid, err := hub.authenticator.Authenticate(r)
	if err != nil {
		log.Println(fmt.Errorf("jwt parse error: %w", err))
		return
	}
    // ... 其他代码
}

在后面我们实现了更加完善的认证流程之后,我们只需要实现一个新的 Authenticator 即可。

2023 了,应用监控怎么做

发展到今天,我们已经有了很多很好用的监控相关的东西,比如 PrometheusGrafana
以及一些分布式链路追踪的组件,如 skywalkingjaeger 等。

但是他们各自的应用场景都不太一样,并不存在一个万能的监控工具,因此我们需要根据自己的需求来选择:

  • Prometheus:Prometheus 是一个开源的系统监控和报警工具。主要用于收集、存储和查询系统的监控数据,以便进行性能分析、故障排除和告警。
  • Grafana:Grafana 是一个开源的数据可视化和监控平台,用于创建、查询、分析和可视化时间序列数据。目前比较常见的组合就是 Prometheus + Grafana,通过 Prometheus 收集数据,然后通过 Grafana 展示数据。
  • 分布式链路追踪:常用语分布式系统的调用链路追踪,可以用于分析系统的性能瓶颈,以及分析系统的调用链路。常见的实现有 skywalkingjaeger 等。

在我们这个实例中,我们只需要实现一个简单的监控即可,因此我们可以使用 Prometheus + Grafana 的组合。

Prometheus 基本原理

但在此之前我们最好先了解一下 Prometheus 的工作原理,下面是来自 Prometheus 官网的架构图:

在这里插入图片描述

我们可以从两个角度来看这张图:组件、流程。

  1. 组件
  • Prometheus ServerPrometheus 服务端,主要负责数据的收集、存储、查询等。(上图中间部分)
  • AlertmanagerPrometheus 的告警组件,主要负责告警的发送。(上图右上角)
  • Prometheus web UI:可以在这个界面执行 PromQL,另外 Grafana 可以让我们以一种更直观的方式来查看指标数据(也是使用 PromQL)。(上图右下角)
  • exportersexportersPrometheus 的数据采集组件,主要负责从各个组件中采集数据,然后发送给 Prometheus Server。非常常见的如 node_exporter,也就是服务器基础指标的采集组件。除了 exporters,还有一种常见的数据采集方式是 Pushgateway,也就是将数据推送到 Pushgateway,然后由 Prometheus ServerPushgateway 中拉取数据。(也就是上图左边部分)
  1. 流程
  • 采集数据:也就是从 Pushgateway 或者 exporter 拉取一些指标数据。
  • 存储数据:Prometheus Server 会将采集到的数据存储到本地的 TSDB 中。
  • 查询数据:我们可以通过 web UI 或者 Grafana 来查看数据。

最后,我们可以在 Grafana 中看到如下图表:

在这里插入图片描述

通过这个图,我们就可以很直观的看到我们的系统的一些指标数据了,并且能看到这些指标随着时间的变化趋势。

Grafana 里面的图表都是一个个的 PromQL 查询出来的结果,对于常见的一些监控指标,Grafana 上可以找到很多现有的模板,直接使用即可。

Prometheus 采集的是什么数据

举一个简单的例子:对于一个运行中的系统而言,每一刻它的状态都是不太一样的,比如,可能上一秒 CPU 使用率是 10%,下一秒就变成了 100% 了,
但可能过 1 秒又降低到了 10%。当我们的系统出性能问题的时候,我们就需要去分析这些指标数据,找到问题所在。
比如排查一下出现性能问题的那个时间点,CPU 使用率是不是很高,如果是的话,那么就有可能是 CPU 导致的性能问题。

Prometheus 的作用就是帮助我们采集这些指标数据,然后存储起来,等待某天我们需要分析的时候,再去查询这些数据。
又或者监控到指标有异常的时候,可以通过 Alertmanager 来发送告警。

Prometheus 采集数据频率

Prometheus 采集数据的频率是可以配置的,我们一般配置为 1 分钟采集一次。
也就是说,每隔 1 分钟,Prometheus 才会从 exporter 拉取一次数据,然后存储起来。

应用指标数据采集

对于我们的应用而言,往往也有一些指标可以帮助我们看到应用内部的状态,比如:应用内的线程数、应用占用的内存、应用的 QPS 等等。
但是对于应用指标的监控,并没有一个统一的标准,我们需要根据自己应用的实际情况来决定采集哪些指标。

我们的消息推送系统如何做监控

应用指标

对于我们的消息推送系统而言,目前采集以下这两个重要指即可:

  1. 连接数:可以了解服务器当前负载

连接数我们可以直接通过 len(hub.clients) 来获取,非常简单。

  1. 等待推送的消息数:可以了解服务器能否及时处理消息

我们可以在 Hub 中添加一个 pending atomic.Int64 字段来记录当前等待推送的消息数,然后在 send 方法中进行更新:

func send(hub *Hub, w http.ResponseWriter, r *http.Request) {
    // ... 其他代码 ...
	hub.pending.Add(1)
}

同时在处理完成之后,我们也需要将其减 1,所以 writePump 也需要进行修改:

func (c *Client) writePump() {
	for {
		select {
		case messageLog, ok := <-c.send:
			c.conn.SetWriteDeadline(time.Now().Add(writeWait))
			if !ok {
                // ...
				c.hub.pending.Add(int64(-1 * len(c.send)))
				return
			}

			if err := c.conn.WriteMessage(websocket.TextMessage, []byte(messageLog.Message)); err != nil {
				// ...
				c.hub.pending.Add(int64(-1 * len(c.send)))
				return
			}
		}
		c.hub.pending.Add(int64(-1))
	}
}

我们在 writePump 中有三个地方需要对 pending 字段做减法:连接关闭、发送出错、发送成功。

exporter 以及 Grafana 配置

现在我们知道了我们有两个比较关键的指标需要采集,那到底是如何采集的呢?

具体来说,会有以下两步:

  1. 在消息推送系统中添加一个 /metrics 接口

这个接口的作用就是将我们的指标数据暴露出来,以便 Prometheus 采集。
它返回的就是请求时的连接数和等待推送的消息数,返回的格式也有一定要求,但也不复杂,具体来说就是:

  • 一行一个指标
  • 可以返回多个指标,多行即可
  • 每个指标前一行指定其类型(TYPE
  • 每行的格式为:<指标名称>{<标签名称>=<标签值>, ...} <指标值>

下面是一个简单的例子:

# HELP http_requests_total The total number of HTTP requests.
# TYPE http_requests_total counter
http_requests_total{method="GET", endpoint="/api"} 100
http_requests_total{method="POST", endpoint="/api"} 50

在这个示例中:

  • http_requests_total 是指标名称
  • {method="GET", endpoint="/api"} 是标签集合,用于唯一标识两个不同的时间序列。
  • 10050 是样本值,表示在特定时间点上的 HTTP 请求总数。

最终,我们得到了一个如下的 /metrics 接口:

func metrics(hub *Hub, w http.ResponseWriter, r *http.Request) {
	var pending = hub.pending.Load()
	var connections = len(hub.clients)
	w.Write([]byte(fmt.Sprintf("# HELP connections 连接数\n# TYPE connections gauge\nconnections %d\n", connections)))
	w.Write([]byte(fmt.Sprintf("# HELP pending 等待发送的消息数量\n# TYPE pending gauge\npending %d\n", pending)))
}

不要忘记了在 main 中加上一个入口:

http.HandleFunc("/metrics", func(w http.ResponseWriter, r *http.Request) {
    metrics(hub, w, r)
})

最终,这个接口会返回如下的数据:

# HELP connections 连接数
# TYPE connections gauge
connections 0
# HELP pending 等待发送的消息数量
# TYPE pending gauge
pending 0
  1. Prometheus 中配置 exporter

我们需要在 Prometheus 配置文件中加上以下配置:

scrape_configs:
  # 拉取我们的应用指标
  - job_name: 'websocket'
    static_configs:
    - targets: ['192.168.2.107:8181']

注意:这里不需要在后面加上 /metrics,因为 Prometheus 默认就是去拉取 /metrics 接口的。

在这里插入图片描述

然后我们就可以在 Prometheusweb UI 中看到我们的指标数据了。

  1. Grafana 中配置图表

最后,我们可以在 Grafana 中配置一个图表,来展示我们的指标数据:

在这里插入图片描述

这样,我们就可以看到一个等待发送的消息数量以及连接数的变化了。

总结

最后,再来简单回顾一下本文所讲内容,主要包括以下几个方面:

  • 认证方式是另外一个比较复杂的话题,但是我们依然可以为其预留出一个扩展点,先实现其他功能后再来完善。
  • 目前市面上有很多监控相关的组件,本文使用了 Prometheus 作为例子来演示如何在项目中采集应用的指标数据,以及如何通过 Grafana 来展示这些指标的变化。
  • Prometheus 中包含了 ``Prometheus Serverexporters等组件,其中Server是实际存储数据的地方,而exporters` 是用来采集指标数据的程序。
  • Prometheus 采集到的数据,我们可以通过 Grafana 来进行可视化展示,更加的直观。
  • 应用中,也可以暴露一个 /metrics 端口来返回应用当前的一些状态,只要遵循 Prometheus 的规范即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/334904.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Redis实战之-分布式锁-redission

一、分布式锁-redission功能介绍 基于setnx实现的分布式锁存在下面的问题&#xff1a; 重入问题&#xff1a;重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中&#xff0c;可重入锁的意义在于防止死锁&#xff0c;比如HashTable这样的代码中&#xff0c;他的方法都…

Qt拖拽事件简单实现

1.相关说明 重写resizeEvent(这个按需重写)、dragEnterEvent(拖拽事件函数)、dropEvent(放下事件函数)&#xff0c;可以将本地图片拖拽到label标签中 2.相关界面 3.相关代码 #include "widget.h" #include "ui_widget.h" #include <QDragEnterEvent>…

A V I F是啥?

AVIF 是一种最近的文件格式,在本文撰写之时,已经得到了 Microsoft Edge 的支持,从而获得了重要的浏览器支持。 !重要提示:我们不再处于黑暗时代,大多数大型 Web 平台通常支持当前版本的浏览器的最新 1 年版本。您可以开始使用 AVIF 与 WebP 回退(回退仅在 2024 年底之前是必要的…

禅道的使用及简介

目录 一.禅道简介1.1 禅道主要功能和特点1.2 禅道官网 二.安装禅道2.1 下载禅道开源版2.2.修改数据库密码 三.登录禅道四.禅道的使用4.1.添加部门权限4.2.添加用户权限4.3.公司名修改4.4、.权限 五.创建产品5.1.产品经理创建产品5.2.添加产品模块5.3.添加产品计划5.4.项目经理的…

TCP/IP 基础知识总结

要说我们接触计算机网络最多的协议&#xff0c;那势必离不开 TCP/IP 协议了&#xff0c;TCP/IP 协议同时也是互联网中最为著名的协议&#xff0c;下面我们就来一起聊一下 TCP/IP 协议。 TCP/IP 的历史背景 最初还没有 TCP/IP 协议的时候&#xff0c;也就是在 20 世纪 60 年代…

java8 列表通过 stream流 根据对象属性去重的三种实现方法

java8 列表通过 stream流 根据对象属性去重的三种实现方法 一、简单去重 public class DistinctTest {/*** 没有重写 equals 方法*/SetterGetterToStringAllArgsConstructorNoArgsConstructorpublic static class User {private String name;private Integer age;}/*** lombo…

服务注册流程解析

本文主要介绍服务注册的基本流程 起手式 接上面的继续说&#xff0c;服务注册是一门至高无上的武学&#xff0c;招式千变万化 &#xff0c;九曲十八弯打得你找不到北。可正所谓这顺藤摸瓜&#xff0c;瓜不好找&#xff0c;可是这藤长得地方特别显眼。那么今天&#xff0c;就让…

LLMs之Vanna:Vanna(利用自然语言查询数据库的SQL工具+底层基于RAG)的简介、安装、使用方法之详细攻略

LLMs之Vanna&#xff1a;Vanna(利用自然语言查询数据库的SQL工具底层基于RAG)的简介、安装、使用方法之详细攻略 目录 Vanna的简介 1、用户界面 2、RAG vs. Fine-Tuning 3、为什么选择Vanna&#xff1f; 4、扩展Vanna Vanna的安装和使用方法 1、安装 2、训练 (1)、使用…

航空飞行器运维VR模拟互动教学更直观有趣

传统的二手车鉴定评估培训模式存在实践性不强、教学样本不足、与实际脱节等一些固有的不足。有了VR虚拟仿真技术的加持&#xff0c;二手车鉴定评估VR虚拟仿真实训系统逐渐进入实训领域&#xff0c;为院校及企业二手车检测培训提供了全新的解决方案。 高职院校汽车专业虚拟仿真实…

手写Vue3源码

Vue3核心源码 B站视频地址&#xff1a;https://www.bilibili.com/video/BV1nW4y147Pd?p2&vd_source36bacfbaa95ea7a433650dab3f7fa0ae Monorepo介绍 Monorepo 是管理项目代码的一种方式&#xff0c;只在一个仓库中管理多个模块/包 一个仓库可以维护多个模块&#xff0c;…

鸿蒙开发系列教程(五)--ArkTS语言:组件开发

1、基础组件 组件API文档&#xff1a;https://developer.huawei.com/consumer/cn/doc/harmonyos-references-V2/84_u58f0_u660e_u5f0f_u5f00_u53d1_u8303_u5f0f_uff09-0000001427744776-V2 查看组件API 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传 容…

项目实战———苍穹外卖(DAY12)

课程内容 工作台 Apache POI 导出运营数据Excel报表 功能实现&#xff1a;工作台、数据导出 工作台效果图&#xff1a; 数据导出效果图&#xff1a; 在数据统计页面点击数据导出&#xff1a;生成Excel报表 1. 工作台 1.1 需求分析和设计 1.1.1 产品原型 工作台是系统运营…

SpringBoot的yml多环境配置3种方法

文章目录 SpringBoot的yml多环境配置3种方法1、多个yml文件1.1、创建多个配置文件applicaiton.yml中指定配置 2、单个yml文件3、在pom.xml中指定环境配置3.1、创建多个配置文件3.2、在application.yml中添加多环境配置属性3.3、在pom.xml中指定使用的配置3.4、问题&#xff1a;…

【论文阅读】GPT4Graph: Can Large Language Models Understand Graph Structured Data?

文章目录 0、基本介绍1、研究动机2、准备2.1、图挖掘任务2.2、图描述语言&#xff08;GDL&#xff09; 3、使用LLM进行图理解流程3.1、手动提示3.2、自提示 4、图理解基准4.1、结构理解任务4.1、语义理解任务 5、数据搜集5.1、结构理解任务5.2、语义理解任务 6、实验6.1、实验设…

VB6.0报错:操作符AddressOf使用无效

VB调试&#xff0c;尝试调用DLL中的方法并带有回调函数&#xff0c;报错提示&#xff1a; 操作符AddressOf使用无效 代码&#xff1a; Private Sub btnScan_Click()... WCHBLEStartScanBLEDevices AddressOf callBackEnd Sub This function is called from the dll Public Fu…

蓝桥杯-最少刷题数

&#x1f4d1;前言 本文主要是【算法】——最少刷题数的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304;每日一句&#x…

IaC基础设施即代码:Terraform 创建 docker 网络与容器资源

目录 一、实验 1.环境 2.Terraform查看版本 3.Linux主机安装Docker 4.Terraform使用本地编译&#xff08;In-house&#xff09;的Providers 5.Docker-CE 开启远程API 6. Linux主机拉取镜像 7.Terraform 创建docker 网络资源 8.Terraform 创建docker 容器资源 一、实验 …

Tensorflow2.0笔记 - 不使用layer方式,简单的MNIST训练

本笔记不使用layer相关API&#xff0c;搭建一个三层的神经网络来训练MNIST数据集。 前向传播和梯度更新都使用最基础的tensorflow API来做。 import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import numpy as npdef load_mnist(…

Modern C++ 条件变量

今天无意中看到一篇帖子&#xff0c;关于条件变量的&#xff0c;不过仔细看看发现它并达不到原本的目的。 程序如下&#xff0c;读者可以先想想他的本意&#xff0c;以及有没有问题&#xff1a; #include <iostream> #include <thread> #include <condition_v…

无刷电机学习-原理篇

一、无刷电机的优点 使用一项东西首先就要明白为什么要使用它&#xff0c;使用它有什么优点。与有刷电机相比无刷电机除了控制繁琐几乎全是优点。 1、应用范围广&#xff1a;家用电器&#xff08;冰箱空调压缩机、洗衣机、水泵等&#xff09;、汽车、航空航天、消费品工业自动…